This paper is about the stagnation point flow and mass transfer with chemical reaction past a stretching/shrinking cylinder. The governing partial differential equations in cylindrical form are transformed into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using a shooting method. Results for the skin friction coefficient, Schmidt number, velocity profiles as well as concentration profiles are presented for different values of the governing parameters. Effects of the curvature parameter, stretching/shrinking parameter and Schmidt number on the flow and mass transfer characteristics are examined. The study indicates that dual solutions exist for the shrinking cylinder but for the stretching cylinder, the solution is unique. It is observed that the surface shear stress and the mass transfer rate at the surface increase as the curvature parameter increases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3935189PMC
http://dx.doi.org/10.1038/srep04178DOI Listing

Publication Analysis

Top Keywords

mass transfer
16
flow mass
12
stagnation point
8
point flow
8
transfer chemical
8
chemical reaction
8
reaction stretching/shrinking
8
stretching/shrinking cylinder
8
differential equations
8
schmidt number
8

Similar Publications

Mass spectrometric monitoring of redox transformation and arylation of tryptophan.

Anal Chim Acta

May 2025

State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, PR China; College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China; Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China; Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi, 530004, PR China. Electronic address:

Tryptophan (Trp) is an essential amino acid obtained from human diet. It is involved not only in de novo biosynthesis of proteins but also in complex metabolic pathways. Redox transformation of tryptophan is under-explored in comparison with kynurenine, serotonin and indole pyruvate pathways.

View Article and Find Full Text PDF

Enhanced CO Capture Using TiO Nanoparticle-Functionalized Solvent: A Study on Absorption Experiments.

Nanomaterials (Basel)

February 2025

Department of Chemical Engineering Materials Environment, Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy.

The growing amount of carbon dioxide (CO) in the atmosphere significantly contributes to global warming and climate change. This study focuses on the use of aqueous potassium carbonate (KCO) solutions as a solvent for CO absorption, emphasizing the role of titanium dioxide (TiO) nanoparticles in enhancing performance. A detailed understanding of reaction kinetics and the dynamic behavior of the absorber is crucial for optimizing the process.

View Article and Find Full Text PDF

The accumulation of organic pollutants and solid waste is one of the major environmental challenges faced globally. Establishing an efficient recycling system for solid waste and designing cost-effective, high-performance photocatalysts are urgent tasks for the removal of organic pollutants from water. This study utilizes coal gangue as the precursor to synthesize a coal gangue-based phosphorus-silicon-aluminum molecular sieve (SAPO-5) via hydrothermal synthesis.

View Article and Find Full Text PDF

Advancing durable solutions for carbon storage and removal at the gigaton scale to produce solid carbonates carbon mineralization requires harnessing earth abundant magnesium silicate resources. Calibrated insights linking the structural and morphological features of earth abundant amorphous and crystalline magnesium silicate phases to their reactivity are essential for scalable deployment but remain underdeveloped. To resolve the influence of silica coordination and mass transfer on carbon mineralization behavior, magnesium silicates bearing amorphous and crystalline phases (AC Mg-silicate) are synthesized.

View Article and Find Full Text PDF

The direct effects of ionizing radiation on antibiotics are largely unknown. Here, we report mass spectra of the cationic products of the irradiation of three antibiotics by carbon ions at 10.4 MeV kinetic energy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!