This review explores the existing understanding and the available approaches to estimating the emissions and fate of semi-volatile organic compounds (SVOCs) and in particular focuses on the brominated flame retardants (BFRs). Volatilisation, an important emission mechanism for the more volatile compounds can be well described using current emission models. More research is needed, however, to better characterise alternative release mechanisms such as direct material-particle partitioning and material abrasion. These two particle-mediated emissions are likely to result in an increased chemical release from the source than can be accounted for by volatilisation, especially for low volatile compounds, and emission models need to be updated in order to account for these. Air-surface partitioning is an important fate process for SVOCs such as BFRs however it is still not well characterised indoors. In addition, the assumption of an instantaneous air-particle equilibrium adopted by current indoor fate models might not be valid for high-molecular weight, strongly sorbing compounds. A better description of indoor particle dynamics is required to assess the effect of particle-associated transport as this will control the fate of low volatile BFRs. We suggest further research steps that will improve modelling precision and increase our understanding of the factors that govern the indoor fate of a wide range of SVOCs. It is also considered that the appropriateness of the selected model for a given study relies on the individual characteristics of the study environment and scope of the study.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2014.02.005DOI Listing

Publication Analysis

Top Keywords

emissions fate
8
brominated flame
8
flame retardants
8
volatile compounds
8
emission models
8
low volatile
8
indoor fate
8
fate
5
fate brominated
4
indoor
4

Similar Publications

This is the first study to investigate the possible release of microplastic-derived dissolved organic matter (MP-DOM) in water from three major types of bio-based MPs, namely, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and PLA-PHA mixtures, under ultraviolet (UV) irradiation conditions. At an initial MP concentration of approximately 5 g per liter, the release of MP-DOM from the studied MPs ranged from 1.55-6.

View Article and Find Full Text PDF

Global spatiotemporal characterization factors for freshwater eutrophication under climate change scenarios.

Sci Total Environ

December 2024

Environmental Economics (EnvEcon), Department of Engineering Management, Faculty of Business and Economics, University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium; Flanders Make@UAntwerp, 2000 Antwerp, Belgium; NANOlight Centre of Excellence, Prinsstraat 13, 2000 Antwerp, Belgium. Electronic address:

Nutrient enrichment of water bodies can lead to eutrophication, which poses a global threat to freshwater ecosystems, affecting biodiversity and water quality. While human activities have accelerated eutrophication, climate change further complicates the dynamics of nutrient cycling and ecosystem responses. Here, we provide global, spatially explicit freshwater eutrophication characterization factors, at an annual resolution from 2021 up to 2099 based on eight different climate change scenarios.

View Article and Find Full Text PDF

The pollution potential of a municipal wastewater treatment plant (WWTP) in Bursa, Türkiye, in terms of organochlorine pesticides (ΣOCPs), polychlorinated biphenyls (ΣPCBs), and polybrominated diphenyl ethers (ΣPBDEs), was investigated in air samples. Concentrations were determined using polyurethane foam disk samplers at key processes, such as the aeration tank (AT) and settling chamber (SC) of the WWTP and the background area (BA) at an urban site. Atmospheric concentration levels of PBDEs at the SC are 1.

View Article and Find Full Text PDF

Novel insights into PAHs accumulation and multi-method characterization of interaction between groundwater and surface water in middle Yangtze River: Hydrochemistry, isotope hydrology and fractionation effect.

Sci Total Environ

December 2024

Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.

To meet the challenge of water quality protection and management in the middle Yangtze River and understand the accumulation mechanism of PAHs in aquatic complexity systems, caused by hydro-chemical changes, anthropogenic and geological activities, and intensive surface water-groundwater interaction, a comprehensive study is urgently needed. The study investigated the pollution levels, potential sources, accumulation mechanism, and groundwater- surface water interaction of polycyclic aromatic hydrocarbons (PAHs) in wet and dry seasons of the middle Yangtze River. There was no significant difference of PAHs accumulation between wet and dry seasons of the middle Yangtze River.

View Article and Find Full Text PDF

Background: The tumor microenvironment (TME), including infiltrating T-cells, is thought to play a major role in the pathogenesis and prognosis of follicular lymphoma (FL) and may contribute to its widely varied disease course. We hypothesized that programmed death-1 inhibition may be most effective in untreated, immunocompetent FL patients. Thus, we developed a phase 2 study to evaluate the efficacy of pembrolizumab as the initial treatment for indolent B-cell lymphoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!