In this work we investigate the thermodiffusion behavior of microemulsion droplets of the type H2O/n-alkane/C12E5 (pentaethylene glycol monododecyl ether) using the n-alkanes: n-octane, n-decane, n-dodecane, and n-tetradecane. In order to determine the thermodiffusion behavior of these microemulsion droplets, we apply the infrared thermal diffusion forced Rayleigh scattering (IR-TDFRS) technique. We measure the Soret coefficient (ST) as function of the structure upon approaching the emulsification failure boundary (efb) and as a function of the radius of the spherical o/w microemulsion droplets close to the efb. By varying the chain length of the n-alkanes, we are able to study the thermodiffusion behavior of spherical o/w microemulsion droplets of different sizes at the same temperature. In the investigated range a linear dependence of the Soret coefficient as function of the radius was found. By use of a proposed relationship between the Soret coefficient and the temperature dependence of the interfacial tension, the transition layer l could be determined for the first time. Additionally, small angle neutron scattering (SANS) experiments are performed to determine the size and to prove that the shape of the microemulsion droplets is spherical close to the efb. Accordingly, the scattering curves could be quantitatively described by a combination of a spherical core-shell form factor and sticky hard sphere structure factor.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp412126nDOI Listing

Publication Analysis

Top Keywords

microemulsion droplets
20
thermodiffusion behavior
12
soret coefficient
12
behavior microemulsion
8
coefficient function
8
function radius
8
spherical o/w
8
o/w microemulsion
8
close efb
8
microemulsion
5

Similar Publications

The repurposing of statins as neuroprotective agents and/or anti-brain tumor drugs is limited by challenges in brain bioavailability and systemic off-target effects. Therefore, improved and targeted delivery of statins to the brain is necessary. This study aimed to develop a high-strength liquid formulation of the poorly soluble prodrug simvastatin for intranasal administration, as a strategy to achieve high brain concentrations of the prodrug and/or its active form, tenivastatin.

View Article and Find Full Text PDF

Surfactant-free microemulsions (SFMEs) composed of tetraethyl orthosilicate (TEOS), ethanol, and water have been successfully fabricated by visual titration and electrical conductivity methods. Three types of SFMEs, water in TEOS (W/O), bicontinuous (BC) and TEOS in water (O/W), were identified by dynamic light scattering and transmission electron microscopy with negative-staining methods. We demonstrated that there are significant differences in the properties of silica products synthesized with different types of SFMEs, and monodispersed silica colloidal spheres (MSCSs) can only be synthesized in the O/W type SFMEs.

View Article and Find Full Text PDF

The Amplification of Alpha-Synuclein Amyloid Fibrils is Suppressed under Fully Quiescent Conditions.

Angew Chem Int Ed Engl

December 2024

Protein Biophysics group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 227, 2800, Kgs., Lyngby.

Seed amplification assays (SAAs) are a promising avenue for the early diagnosis of neurodegenerative diseases. However, when amplifying fibrils from patient-derived samples in multiwell plates, it is currently highly challenging to accurately quantify the aggregates. It is therefore desirable to transfer such assays into a digital format in microemulsion droplets to enable direct quantification of aggregate numbers.

View Article and Find Full Text PDF

Preparation and characterization of lutein functional salt by microemulsion stabilized by whey protein isolate and maltodextrin: Exploration of a novel dietary nutritional supplement.

Int J Biol Macromol

December 2024

State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Nutrition and Health Food Pilot Base of Liaoning Dalian, Dalian Polytechnic University, Dalian 116034, Liaoning, China. Electronic address:

Article Synopsis
  • Excessive salt intake is linked to serious health issues like hypertension and cardiovascular diseases, leading researchers to find alternatives for reducing sodium without sacrificing flavor.
  • One innovative solution involves creating hollow salts using whey protein isolate (WPI) and maltodextrin (MD), which maintain the salty taste while lowering sodium levels.
  • The study established that this method successfully produced stable hollow salt particles with beneficial properties, including the encapsulation of lutein, demonstrating high antioxidant activity and stability.
View Article and Find Full Text PDF

Customizable Self-Microemulsifying Rectal Suppositories by Semisolid Extrusion 3D Printing.

Pharmaceutics

October 2024

BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE, MRC), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea.

: This study aims to create an innovative self-microemulsifying drug delivery system (SMEDDS) suppository for ibuprofen (IBU) using semisolid extrusion (SSE) three-dimensional (3D) printing technology. : Based on solubility studies and the ability to form a transparent microemulsion upon dilution, a selected oil, surfactant, and co-surfactant were utilized to prepare SMEDDS-3DPS containing IBU. The optimal formulation consisted of 10% Triacetin, 80% Gelucire 48/16, and 10% Tetraethylene glycol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!