Seed/catalyst-free vertical growth of high-density electrodeposited zinc oxide nanostructures on a single-layer graphene.

Nanoscale Res Lett

Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Semarak, Kuala Lumpur 54100, Malaysia.

Published: February 2014

We report the seed/catalyst-free vertical growth of high-density electrodeposited ZnO nanostructures on a single-layer graphene. The absence of hexamethylenetetramine (HMTA) and heat has resulted in the formation of nanoflake-like ZnO structure. The results show that HMTA and heat are needed to promote the formation of hexagonal ZnO nanostructures. The applied current density plays important role in inducing the growth of ZnO on graphene as well as in controlling the shape, size, and density of ZnO nanostructures. High density of vertically aligned ZnO nanorods comparable to other methods was obtained. The quality of the ZnO nanostructures also depended strongly on the applied current density. The growth mechanism was proposed. According to the growth timing chart, the growth seems to involve two stages which are the formation of ZnO nucleation and the enhancement of the vertical growth of nanorods. ZnO/graphene hybrid structure provides several potential applications in electronics and optoelectronics such as photovoltaic devices, sensing devices, optical devices, and photodetectors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937434PMC
http://dx.doi.org/10.1186/1556-276X-9-95DOI Listing

Publication Analysis

Top Keywords

zno nanostructures
16
vertical growth
12
seed/catalyst-free vertical
8
growth high-density
8
high-density electrodeposited
8
nanostructures single-layer
8
single-layer graphene
8
zno
8
hmta heat
8
applied current
8

Similar Publications

Toxic acetone gas emissions and leakage are a potential threat to the environment and human health. Gas sensors founded on metal oxide semiconductors (MOS) have become an effective strategy for toxic gas detection with their mature process. In the present work, an efficient acetone gas sensor based on Au-modified ZnO porous nanofoam (Au/ZnO) is synthesized by polyvinylpyrrolidone-blowing followed by a calcination method.

View Article and Find Full Text PDF

Incorporating nanoparticles into denture materials shows promise for the prevention of denture-associated fungal infections. This study investigates the antifungal properties of acrylic modified with microwave-sintered ZnO-Ag nanoparticles. ZnO-Ag nanoparticles (1% and 2.

View Article and Find Full Text PDF

Cytotoxicity and Antimicrobial Efficacy of Fe-, Co-, and Mn-Doped ZnO Nanoparticles.

Molecules

December 2024

College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia.

Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties. However, the current use of ZnO NPs is hindered by their potential cytotoxicity concerns, which are likely attributed to the generation of reactive oxygen species (ROS) and the dissolution of particles to ionic zinc. To reduce the cytotoxicity of ZnO NPs, transitional metals are introduced into ZnO lattices to modulate the ROS production and NP dissolution.

View Article and Find Full Text PDF

The removal of organic pollutants from water is significantly important as they have harmful effects on the ecosystem. Heterogeneous photocatalysis is a potential technique for the removal of organic pollutants from the wastewater. In this article, zinc oxide (ZnO) and samarium oxide (SmO) nanoparticles and ZnO-SmO nanocomposite (ZS) were synthesized by the co-precipitation method.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) generated by oxidative stress have emerged as critical factors in the pathophysiology of malignancies. This study investigated the antioxidant and anticancer properties of zinc (Zn), selenium (Se), and silver (Ag) nanoparticles (NPs) against the A2780 human ovarian cancer cell line. Here, the bioinformatics approach was used to determine the top differentially expressed genes associated with oxidative stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!