We have synthesized a family of rhein-huprine hybrids to hit several key targets for Alzheimer's disease. Biological screening performed in vitro and in Escherichia coli cells has shown that these hybrids exhibit potent inhibitory activities against human acetylcholinesterase, butyrylcholinesterase, and BACE-1, dual Aβ42 and tau antiaggregating activity, and brain permeability. Ex vivo studies with the leads (+)- and (-)-7e in brain slices of C57bl6 mice have revealed that they efficiently protect against the Aβ-induced synaptic dysfunction, preventing the loss of synaptic proteins and/or have a positive effect on the induction of long-term potentiation. In vivo studies in APP-PS1 transgenic mice treated ip for 4 weeks with (+)- and (-)-7e have shown a central soluble Aβ lowering effect, accompanied by an increase in the levels of mature amyloid precursor protein (APP). Thus, (+)- and (-)-7e emerge as very promising disease-modifying anti-Alzheimer drug candidates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm401824wDOI Listing

Publication Analysis

Top Keywords

disease-modifying anti-alzheimer
8
vivo studies
8
synthesis multitarget
4
multitarget biological
4
biological profiling
4
profiling novel
4
novel family
4
family rhein
4
rhein derivatives
4
derivatives disease-modifying
4

Similar Publications

The preclinical phase of Alzheimer's disease represents a crucial time window for therapeutic intervention but requires the identification of clinically relevant biomarkers that are sensitive to the effects of disease-modifying drugs. Amyloid peptide and tau proteins, the main histological hallmarks of Alzheimer's disease, have been widely used as biomarkers of anti-amyloid and anti-tau drugs. However, these biomarkers do not fully capture the multiple biological pathways of the brain.

View Article and Find Full Text PDF

The prevalence of Alzheimer's disease (AD) is rising with an aging population worldwide and is expected to surpass 130 million by 2050. India is no exception, but the true prevalence data on AD is not conclusive. By 2050, India will have almost 15% of the population aged 60 years or above.

View Article and Find Full Text PDF

The complex nature of Alzheimer's disease (AD) etiopathology is among the principal hurdles to developing effective anti-Alzheimer agents. Tau pathology and Amyloid-β (Aβ) accumulation are hallmarks and validated therapeutic strategies of AD. GSK-3β is a serine/threonine kinase involved in tau phosphorylation.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common neurodegenerative disorder, marked by cognitive impairment. Currently, the available treatment provides only symptomatic relief and there is a great need to design and formulate new drugs to stabilize AD. In the search for a new anti-Alzheimer's drug, 3,5-(2-hydroxyethyl)-1,3,5-thiadiazinane-2-thione (THTT), a tetrahydro-2H-1,3,5-thiadiazine-2-thione derivative, was investigated against a scopolamine-induced Alzheimer's model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!