Cell homogenates provide a simple and yet powerful means of investigating the actions of Ca(2+)-mobilizing second messengers and their target Ca(2+) stores. The sea urchin egg homogenate is particularly useful and almost unique in retaining robust Ca(2+) responses to all three major messengers, i.e., inositol 1,4,5-trisphosphate (IP3), cyclic ADP-ribose, and nicotinic acid adenine dinucleotide phosphate (NAADP) (Lee and Aarhus. J Biol Chem 270: 2152-2172, 1995). It is not only invaluable for probing the pharmacology and mechanism of action of these messengers, but can also be used to assay Ca(2+) uptake mechanisms (Churchill et al. Cell 111: 703-708, 2002), second messenger production (Morgan et al. Methods in cADPR and NAADP research. In: Putney JW Jr (ed) Methods in calcium signalling, CRC: Boca Raton, FL, 2006), and dynamics of luminal pH (pHL) changes within acidic Ca(2+) stores (Lee and Epel. Dev Biol 98: 446-454, 1983; Morgan and Galione. Biochem J 402: 301-310, 2007). Here, we detail the protocols for preparing and using egg homogenates, wherein eggs are shed and collected into artificial sea water (ASW), dejellied, washed several times in Ca(2+)-free ASW, and then finally washed and resuspended in an intracellular-like medium. Homogenization is effected with a Dounce glass tissue homogenizer (at 50 % (v/v)) and aliquots frozen and stored at -80 °C. For Ca(2+) (or pHL) measurements, homogenate is thawed and sequentially diluted in an intracellular-like medium and the fluorescence of Ca(2+)- or pHL-sensitive dyes monitored in a standard fluorimeter or plate-reader.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-62703-974-1_10 | DOI Listing |
ACS Omega
January 2025
Unconventional Computing Laboratory, University of the West of England, Coldharbour Ln, Stoke Gifford, Bristol BS16 1QY, U.K.
Sea urchins display complex bioelectric activity patterns, even with their decentralized nervous system. Electrophysiological recordings showed distinct spiking patterns. The baseline potential was about 8.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Zoology, University of Cambridge, Cambridge, UK.
The evolutionary origin of the vertebrate brain remains a major subject of debate, as its development from a dorsal tubular neuroepithelium is unique to chordates. To shed light on the evolutionary emergence of the vertebrate brain, we compared anterior neuroectoderm development across deuterostome species, using available single-cell datasets from sea urchin, amphioxus, and zebrafish embryos. We identified a conserved gene co-expression module, comparable to the anterior gene regulatory network (aGRN) controlling apical organ development in ambulacrarians, and spatially mapped it by multiplexed in situ hybridization to the developing retina and hypothalamus of chordates.
View Article and Find Full Text PDFMar Drugs
January 2025
Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China.
Echinoderms, a diverse group of marine invertebrates including starfish, sea urchins, and sea cucumbers, have been recognized as prolific sources of structurally diverse natural products. In the past five years, remarkable progress has been made in the isolation, structural elucidation, and pharmacological assessment of these bioactive compounds. These metabolites, including polysaccharides, triterpenoids, steroids, and peptides, demonstrate potent bioactivities such as anticancer, anti-inflammatory, antiviral, and antimicrobial effects, providing valuable insights and scaffolds for drug discovery.
View Article and Find Full Text PDFMar Drugs
December 2024
CESAM-Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.
This review is focused on the research, innovation and technological breakthroughs on marine invertebrate collagens and their applications. The findings reveal that research dates back to the 1970s, and after a period of reduced activity, interest in collagens from several marine invertebrate groups was renewed around 2008, likely driven by the increased commercial interest in these biomolecules of marine origin. Research and development are predominantly reported from China and Japan, highlighting significant research interest in cnidarians (jellyfish), echinoderms (sea cucumbers, sea urchins and starfish), molluscs (squid and cuttlefish) and sponges.
View Article and Find Full Text PDFDokl Biol Sci
January 2025
Biological Faculty, Moscow State University, Moscow, Russia.
Expression of 11 genes of the Hox cluster (SiHox1, 2, 3, 5, 6, 7, 8, 9/10, 11/13a, 11/13b, and 11/13c) was assessed in the sea urchin Strongylocentrotus intermedius at early developmental stages, including the blastula (13 h post fertilization (hpf)), gastrula (35 hpf), prism (46 hpf), and pluteus (4 and 9 days post fertilization (dpf)) stages. Expression of SiHox7, 11/13b, and 11/13c was observed at the blastula stage; early activation of 11/13c was detected for the first time in regular sea urchins. The expression level was very low at the gastrula and prism stages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!