We designed and engineered mitochondrially targeted obligate heterodimeric zinc finger nucleases (mtZFNs) for site-specific elimination of pathogenic human mitochondrial DNA (mtDNA). We used mtZFNs to target and cleave mtDNA harbouring the m.8993T>G point mutation associated with neuropathy, ataxia, retinitis pigmentosa (NARP) and the "common deletion" (CD), a 4977-bp repeat-flanked deletion associated with adult-onset chronic progressive external ophthalmoplegia and, less frequently, Kearns-Sayre and Pearson's marrow pancreas syndromes. Expression of mtZFNs led to a reduction in mutant mtDNA haplotype load, and subsequent repopulation of wild-type mtDNA restored mitochondrial respiratory function in a CD cybrid cell model. This study constitutes proof-of-principle that, through heteroplasmy manipulation, delivery of site-specific nuclease activity to mitochondria can alleviate a severe biochemical phenotype in primary mitochondrial disease arising from deleted mtDNA species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3992073PMC
http://dx.doi.org/10.1002/emmm.201303672DOI Listing

Publication Analysis

Top Keywords

mitochondrially targeted
8
mtdna
5
targeted zfns
4
zfns selective
4
selective degradation
4
degradation pathogenic
4
mitochondrial
4
pathogenic mitochondrial
4
mitochondrial genomes
4
genomes bearing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!