Ediacara fossils are central to our understanding of animal evolution on the eve of the Cambrian explosion, because some of them likely represent stem-group marine animals. However, some of the iconic Ediacara fossils have also been interpreted as terrestrial lichens or microbial colonies. Our ability to test these hypotheses is limited by a taphonomic bias that most Ediacara fossils are preserved in sandstones and siltstones. Here we report several iconic Ediacara fossils and an annulated tubular fossil (reconstructed as an erect epibenthic organism with uniserial arranged modular units), from marine limestone of the 551-541 Ma Dengying Formation in South China. These fossils significantly expand the ecological ranges of several key Ediacara taxa and support that they are marine organisms rather than terrestrial lichens or microbial colonies. Their close association with abundant bilaterian burrows also indicates that they could tolerate and may have survived moderate levels of bioturbation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933909PMC
http://dx.doi.org/10.1038/srep04180DOI Listing

Publication Analysis

Top Keywords

ediacara fossils
20
fossils preserved
8
marine limestone
8
iconic ediacara
8
terrestrial lichens
8
lichens microbial
8
microbial colonies
8
ediacara
6
fossils
5
marine
4

Similar Publications

Understanding the roles of habitat filtering, dispersal limitations and biotic interactions in shaping the organization of animal communities is a central research goal in ecology. Attempts to extend these approaches into deep time have the potential to illuminate the role of these processes over key intervals in evolutionary history. The Ediacaran marks one such interval, recording the first macroscopic benthic communities and a stepwise intensification in animal ecosystem engineering.

View Article and Find Full Text PDF

An Ediacaran bilaterian with an ecdysozoan affinity from South Australia.

Curr Biol

December 2024

Earth and Planetary Sciences, University of California, Riverside, Riverside, CA 92521, USA.

Molecular clocks and Cambrian-derived metazoans strongly suggest a Neoproterozoic origin of many animal clades. However, fossil bilaterians are rare in the Ediacaran, and no definitive ecdysozoan body fossils are known from the Precambrian. Notably, the base of the Cambrian is characterized by an abundance of trace fossils attributed to priapulid worms, suggesting that major divisions among ecdysozoan groups occurred prior to this time.

View Article and Find Full Text PDF

Fossils of the Ediacara Biota preserve the oldest evidence for complex, macroscopic animals. Most are difficult to constrain phylogenetically, however, the presence of rare, derived groups suggests that many more fossils from this period represent extant groups than are currently appreciated. One approach to recognize such early animals is to instead focus on characteristics widespread in animals today, for example multicellularity, motility, and axial polarity.

View Article and Find Full Text PDF

The earliest evidence of complex macroscopic life on Earth is preserved in Ediacaran-aged siliciclastic deposits as three-dimensional casts and molds, known as Ediacara-style preservation. The mechanisms that led to this extraordinary preservation of soft-bodied organisms in fine- to medium-grained sandstones have been extensively debated. Ediacara-style fossilization is recorded in a variety of sedimentary facies characterized by clean quartzose sandstones (as in the eponymous Ediacara Member) as well as less compositionally mature, clay-rich sandstones and heterolithic siliciclastic deposits.

View Article and Find Full Text PDF

Ediacara-type macrofossils appear as early as ~575 Ma in deep-water facies of the Drook Formation of the Avalon Peninsula, Newfoundland, and the Nadaleen Formation of Yukon and Northwest Territories, Canada. Our ability to assess whether a deep-water origination of the Ediacara biota is a genuine reflection of evolutionary succession, an artifact of an incomplete stratigraphic record, or a bathymetrically controlled biotope is limited by a lack of geochronological constraints and detailed shelf-to-slope transects of Ediacaran continental margins. The Ediacaran Rackla Group of the Wernecke Mountains, NW Canada, represents an ideal shelf-to-slope depositional system to understand the spatiotemporal and environmental context of Ediacara-type organisms' stratigraphic occurrence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!