This paper presents a novel systematic approach for patient-specific classification of long-term Electroencephalography (EEG). The goal is to extract the seizure sections with a high accuracy to ease the Neurologist's burden of inspecting such long-term EEG data. We aim to achieve this using the minimum feedback from the Neurologist. To accomplish this, we use the majority of the state-of-the-art features proposed in this domain for evolving a collective network of binary classifiers (CNBC) using multi-dimensional particle swarm optimization (MD PSO). Multiple CNBCs are then used to form a CNBC ensemble (CNBC-E), which aggregates epileptic seizure frames from the classification map of each CNBC in order to maximize the sensitivity rate. Finally, a morphological filter forms the final epileptic segments while filtering out the outliers in the form of classification noise. The proposed system is fully generic, which does not require any a priori information about the patient such as the list of relevant EEG channels. The results of the classification experiments, which are performed over the benchmark CHB-MIT scalp long-term EEG database show that the proposed system can achieve all the aforementioned objectives and exhibits a significantly superior performance compared to several other state-of-the-art methods. Using a limited training dataset that is formed by less than 2 min of seizure and 24 min of non-seizure data on the average taken from the early 25% section of the EEG record of each patient, the proposed system establishes an average sensitivity rate above 89% along with an average specificity rate above 93% over the test set.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbi.2014.02.005DOI Listing

Publication Analysis

Top Keywords

proposed system
12
patient-specific classification
8
classification long-term
8
long-term electroencephalography
8
long-term eeg
8
sensitivity rate
8
classification
5
eeg
5
automated patient-specific
4
long-term
4

Similar Publications

Background: Strain Cyp38S was isolated as an endophyte from the plant Cyperus alternifolius, collected along the banks of the River Nile in 2019. Preliminary analysis tentatively identified Cyp38S as belonging to the genus Pseudocitrobacter.

Methods: The preliminary identification of Cyp38S was performed using the VITEK2 identification system, MALDI-TOF-MS, and 16S rRNA gene sequencing.

View Article and Find Full Text PDF

The emergence and prevalence of hypervirulent Klebsiella pneumoniae (hvKP) have proposed a great challenge to control this infection. Therefore, exploring some new drugs or strategies for treating hvKP infection is an urgent issue for scientific researchers. In the present study, the clpV gene deletion strain of hvKP (ΔclpV-hvKP) was constructed using CRISPR-Cas9 technology, and the biological characteristics of ΔclpV-hvKP were investigated to explore the new targets for controlling this pathogen.

View Article and Find Full Text PDF

Background: To assess the integrity of the developing nervous system, the Prechtl general movement assessment (GMA) is recognized for its clinical value in diagnosing neurological impairments in early infancy. GMA has been increasingly augmented through machine learning approaches intending to scale-up its application, circumvent costs in the training of human assessors and further standardize classification of spontaneous motor patterns. Available deep learning tools, all of which are based on single sensor modalities, are however still considerably inferior to that of well-trained human assessors.

View Article and Find Full Text PDF

Smooth braking control of excavator hydraulic load based on command reshaping.

ISA Trans

January 2025

School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523015, China; School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China. Electronic address:

Excavators, a type of human-operated construction machinery, suffer from poor hydraulic load braking stability, which seriously affects operator comfort. To address this challenge, this study investigates load braking laws through model analysis and designs an open-loop control algorithm called command reshaping, which can prolong the small-opening time of the main valve by segmentally adjusting the joystick command during load braking and then actively adjusting the key parameters reflecting the system's kinetic-potential energy state, thereby suppressing braking oscillations. The experimental results based on a 1.

View Article and Find Full Text PDF

Liver regeneration is intricate, involves many cells, and necessitates extended research. This study aimed to investigate the response of liver oval cells (bipotent liver progenitors) to the epigenetic modifier trichostatin A (TSA), an HDAC1 inhibitor, and to develop a scoring system for assessing the response of these cells. Three groups of equally divided rats (n=24) were selected: control (A, dimethyl sulfoxide treated); oval cell induction (B, acetylaminofluorene [2-AAF] to block hepatocyes/carbon tetrachloride [CCL4] to induce oval cell response); and epigenetic modulation (C, TSA post 2-AAF/CCL4 injury).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!