Zinc protects cyclophosphamide-induced testicular damage in rat: involvement of metallothionein, tesmin and Nrf2.

Biochem Biophys Res Commun

Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India. Electronic address:

Published: March 2014

The role of zinc (Zn) in the protection of germ cells against testicular toxicants has long been elucidated, but the exact molecular mechanisms have not yet been explored. Cyclophosphamide (CP), one of the most commonly used anticancer drugs survived ages of treatment, but the unwanted toxicity limits its clinical usage. The present investigation was aimed to explore the role of Zn and its associated pathways in CP-induced testicular toxicity in S.D. rat. CP was administered in saline 30 mg/kg 5× weekly for 3 weeks (total dose of 450 mg/kg) by i.p. route, while Zn was supplemented by oral route at the doses of 1, 3, 10mg/kg/day for 3 weeks. CP significantly reduced Zn levels in serum and testes, body and testicular weight, sperm count and motility, spermiogenic cells, plasma testosterone and significantly increased the oxidative stress, sperm head abnormalities, sperm DNA damage with decreased chromatin and acrosome integrity; while Zn supplementation ameliorated the same. The present results demonstrated that Zn supplementation protected against CP-induced testicular damages by modulating metallothionein (MT), tesmin and Nrf2 associated pathways. Thus Zn supplementation during anticancer therapy might be potentially beneficial in reducing the off target effects associated with oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2014.02.055DOI Listing

Publication Analysis

Top Keywords

metallothionein tesmin
8
tesmin nrf2
8
associated pathways
8
cp-induced testicular
8
oxidative stress
8
testicular
5
zinc protects
4
protects cyclophosphamide-induced
4
cyclophosphamide-induced testicular
4
testicular damage
4

Similar Publications

Background: The Testis Expressed Metallothionein Like Protein (TESMIN) gene encodes highly conserved, cysteine-rich, low-molecular proteins that are activated by and have an affinity for heavy metal ions. Previous literature has shown its association with cancer. Nevertheless, no thorough bioinformatics analysis of TESMIN has been done yet in lung adenocarcinoma (LUAD).

View Article and Find Full Text PDF

Background: Tesmin, a 60 kDa protein encoded by the metallothionein-like 5 (MTL5) gene, plays a vital role in spermatogenesis and oogenesis. Recent research has unveiled its potential involvement in malignancies, although its impact on HCC remains poorly understood.

Methods: In this study, we sought to elucidate the clinical significance of tesmin in HCC patients.

View Article and Find Full Text PDF

Cervical cancer represents one of the most important female genital cancers. Cervical squamous cell carcinoma (CESC) accounts for about 90% of all cervical malignancies and the prognosis are unsatisfied. Here we aimed to investigate the clinical relevance of metallothionein-like 5 (MTL5), a novel metallothionein-like protein, in CESC.

View Article and Find Full Text PDF

Nuclear translocation of MTL5 from cytoplasm requires its direct interaction with LIN9 and is essential for male meiosis and fertility.

PLoS Genet

August 2021

First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, China.

Meiosis is essential for the generation of gametes and sexual reproduction, yet the factors and underlying mechanisms regulating meiotic progression remain largely unknown. Here, we showed that MTL5 translocates into nuclei of spermatocytes during zygotene-pachytene transition and ensures meiosis advances beyond pachytene stage. MTL5 shows strong interactions with MuvB core complex components, a well-known transcriptional complex regulating mitotic progression, and the zygotene-pachytene transition of MTL5 is mediated by its direct interaction with the component LIN9, through MTL5 C-terminal 443-475 residues.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) is the most commonly diagnosed cancer and the most frequent cause of cancer-associated mortality worldwide. Tesmin (MTL5) is a 60 kDa protein which has cysteine rich motifs, characteristic of metallothioneins. Tesmin expression was first observed in germ cells during spermatogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!