The natural incidence of fatty liver in ruminants is significantly higher than in monogastric animals. Fatty liver is associated with sterol regulatory element-binding protein 1c (SREBP-1c). The aim of this study was to investigate the regulatory network effects of SREBP-1c on the lipid metabolic genes involved in fatty acid uptake, activation, oxidation, synthesis, and very low-density lipoprotein (VLDL) assembly in bovine hepatocytes. In vitro, bovine hepatocytes were transfected with an adenovirus-mediated SREBP-1c overexpression vector. SREBP-1c overexpression significantly up-regulated the expression and activity of the fatty acid uptake, activation, and synthesis enzymes: liver fatty acid binding protein, fatty acid translocase, acyl-CoA synthetase long-chain 1, acetyl-CoA carboxylase 1, and fatty acid synthase, increasing triglyceride (TG) synthesis and accumulation. SREBP-1c overexpression down-regulated the expression and activity of the lipid oxidation enzymes: carnitine palmitoyltransferase 1 and carnitine palmitoyltransferase 2. Furthermore, the apolipoprotein B100 expression and microsomal triglyceride transfer protein activity were significantly decreased. SREBP-1c overexpression reduced lipid oxidation and VLDL synthesis, thereby decreasing TG disposal and export. Therefore, large amounts of TG accumulated in the bovine hepatocytes. Taken together, these results indicate that SREBP-1c overexpression increases lipid synthesis and decreases lipid oxidation and VLDL export, thereby inducing TG accumulation in bovine hepatocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsbmb.2014.02.009 | DOI Listing |
Ferredoxin 1 and 2 (FDX1/2) constitute an evolutionarily conserved FDX family of iron-sulfur cluster (ISC) containing proteins. FDX1/2 are cognate substrates of ferredoxin reductase (FDXR) and serve as conduits for electron transfer from NADPH to a set of proteins involved in biogenesis of steroids, hemes, ISC and lipoylated proteins. Recently, we showed that Fdx1 is essential for embryonic development and lipid homeostasis.
View Article and Find Full Text PDFNat Commun
November 2024
School of Life Sciences, Henan University, Kaifeng, Henan Province, China.
Lipids Health Dis
November 2024
Department of Endocrinology, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, People's Republic of China.
Background: Metabolic dysfunction associated steatotic liver disease (MASLD), closely linked to excessive lipogenesis, induces chronic liver disease. MASLD often cause other metabolic diseases, such as cardiovascular disease, diabetes and obesity. However, the mechanism of N-acetyltransferase 10 (NAT10)-mediated N4-acetylcytidine (ac4C) mRNA modification in lipogenesis of MASLD has not been fully elucidated.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
October 2024
Central Laboratory, First College of Clinical Medical Science of China Three Gorges University (Yichang Central People's Hospital)//Hubei Key Laboratory of Ischemic Cardiovascular Disease//Hubei Provincial Clinical Research Center for Ischemic Cardiovascular Disease, Yichang 443003, China.
Objective: To investigate the mechanism of Nlrp6 for regulating hepatocellular carcinoma (HCC) progression in light of lipid synthesis regulation.
Methods: Nlrp6 expression level in HCC tissues of different pathological grades was investigated using RNA-seq data from The Cancer Genome Atlas (TCGA) database, and its correlation with the patients' survival was analyzed with Kaplan-Meier survival analysis. HepG2 cells with adenovirus-mediated Nlrp6 overexpression or knockdown were treated with palmitic acid (PA), and the changes in lipid deposition and cell proliferation were evaluated using Oil Red O staining, CCK-8 assay, EdU staining, and colony formation assay.
J Ethnopharmacol
February 2025
Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial Key Laboratory of Animal Pathogenesis and Comparative Medicine, Harbin, 150030, China. Electronic address:
Ethnopharmacological Relevance: Artemisia capillaris Thunb. (ACT) is a plant in the Asteraceae family. Its traditional effects are to clear away dampness and heat, promote gallbladder and reduce jaundice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!