Background: Fragile X syndrome and tuberous sclerosis are genetic syndromes that both have a high rate of comorbidity with autism spectrum disorder (ASD). Several lines of evidence suggest that these two monogenic disorders may converge at a molecular level through the dysfunction of activity-dependent synaptic plasticity.

Methods: To explore the characteristics of transcriptomic changes in these monogenic disorders, we profiled genome-wide gene expression levels in cerebellum and blood from murine models of fragile X syndrome and tuberous sclerosis.

Results: Differentially expressed genes and enriched pathways were distinct for the two murine models examined, with the exception of immune response-related pathways. In the cerebellum of the Fmr1 knockout (Fmr1-KO) model, the neuroactive ligand receptor interaction pathway and gene sets associated with synaptic plasticity such as long-term potentiation, gap junction, and axon guidance were the most significantly perturbed pathways. The phosphatidylinositol signaling pathway was significantly dysregulated in both cerebellum and blood of Fmr1-KO mice. In Tsc2 heterozygous (+/-) mice, immune system-related pathways, genes encoding ribosomal proteins, and glycolipid metabolism pathways were significantly changed in both tissues.

Conclusions: Our data suggest that distinct molecular pathways may be involved in ASD with known but different genetic causes and that blood gene expression profiles of Fmr1-KO and Tsc2+/- mice mirror some, but not all, of the perturbed molecular pathways in the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940253PMC
http://dx.doi.org/10.1186/2040-2392-5-16DOI Listing

Publication Analysis

Top Keywords

gene expression
12
murine models
12
fragile syndrome
12
syndrome tuberous
12
models fragile
8
tuberous sclerosis
8
monogenic disorders
8
cerebellum blood
8
molecular pathways
8
pathways
7

Similar Publications

TRIAGE: an R package for regulatory gene analysis.

Brief Bioinform

November 2024

Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, QLD 4072, Australia.

Regulatory genes are critical determinants of cellular responses in development and disease, but standard RNA sequencing (RNA-seq) analysis workflows, such as differential expression analysis, have significant limitations in revealing the regulatory basis of cell identity and function. To address this challenge, we present the TRIAGE R package, a toolkit specifically designed to analyze regulatory elements in both bulk and single-cell RNA-seq datasets. The package is built upon TRIAGE methods, which leverage consortium-level H3K27me3 data to enrich for cell-type-specific regulatory regions.

View Article and Find Full Text PDF

Deep learning in integrating spatial transcriptomics with other modalities.

Brief Bioinform

November 2024

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Xuanwu District, Nanjing 210096, China.

Spatial transcriptomics technologies have been extensively applied in biological research, enabling the study of transcriptome while preserving the spatial context of tissues. Paired with spatial transcriptomics data, platforms often provide histology and (or) chromatin images, which capture cellular morphology and chromatin organization. Additionally, single-cell RNA sequencing (scRNA-seq) data from matching tissues often accompany spatial data, offering a transcriptome-wide gene expression profile of individual cells.

View Article and Find Full Text PDF

Combination therapies have emerged as a promising approach for treating complex diseases, particularly cancer. However, predicting the efficacy and safety profiles of these therapies remains a significant challenge, primarily because of the complex interactions among drugs and their wide-ranging effects. To address this issue, we introduce DD-PRiSM (Decomposition of Drug-Pair Response into Synergy and Monotherapy effect), a deep-learning pipeline that predicts the effects of combination therapy.

View Article and Find Full Text PDF

Single-cell multi-omics techniques, which enable the simultaneous measurement of multiple modalities such as RNA gene expression and Assay for Transposase-Accessible Chromatin (ATAC) within individual cells, have become a powerful tool for deciphering the intricate complexity of cellular systems. Most current methods rely on motif databases to establish cross-modality relationships between genes from RNA-seq data and peaks from ATAC-seq data. However, these approaches are constrained by incomplete database coverage, particularly for novel or poorly characterized relationships.

View Article and Find Full Text PDF

Background: Extracellular matrix (ECM) proteins play a crucial role in regulating the biological properties of adherent cells. For cryopreserved fibroblasts, a favourable ECM environment can help restore their natural morphology and function more rapidly, minimizing post-thaw stress responses.

Methods And Results: This study explored the functional responses of cryopreserved enriched caprine adult dermal fibroblast (cadFibroblast) cells to structural [collagen-IV and rat tail collagen (RTC)] and adhesion ECM proteins (laminin, fibronectin, and vitronectin) under in vitro culture conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!