Background: Current clinical assessments of motor function in Huntington's Disease (HD) rely on subjective ratings such as the Unified Huntington's Disease Rating scale (UHDRS). The ability to track disease progression using simple, objective, inexpensive, and robust measures would be beneficial.
Methods: One objective measure of motor performance is hand-tapping. Over the last 14 years we have routinely collected, using a simple device, the number of taps made by the right and left hand over 30 seconds in HD patients attending our NHS clinics.
Results: Here we report on a longitudinal cohort of 237 patients, which includes patients at all stages of the disease on a wide range of drug therapies. Hand tapping in these patients declines linearly at a rate of 5.1 taps per year (p < 0.0001; 95% CI = 3.8 to 6.3 taps), and for each additional year of age patients could perform 0.9 fewer taps (main effect of age: p = 0.0007; 95% CI = 0.4 to 1.4). Individual trajectories can vary widely around this average rate of decline, and much of this variation could be attributed to CAG repeat length. Genotype information was available for a subset of 151 patients, and for each additional repeat, patients could perform 5.6 fewer taps (p < 0.0001; 95% CI = 3.3 to 8.0 taps), and progressed at a faster rate of 0.45 fewer taps per year (CAG by time interaction: p = 0.008; 95% CI = 0.12 to 0.78 taps). In addition, for each unit decrease in Total Functional Capacity (TFC) within individuals, the number of taps decreased by 6.3 (95% CI = 5.4 to 7.1, p < 0.0001).
Conclusions: Hand tapping is a simple, robust, and reliable marker of disease progression. As such, this simple motor task could be a useful tool by which to assess disease progression as well therapies designed to slow it down.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937529 | PMC |
http://dx.doi.org/10.1186/1471-2377-14-35 | DOI Listing |
J Clin Med
December 2024
Neurology Department, Burgos University Hospital, 09006 Burgos, Spain.
: Huntington's disease (HD) is a neurodegenerative movement disorder associated with significant disability and impairment of Activities of Daily Living (ADLs). The impact of upper limb disability on quality of life (QoL) and its influence on ADLs is not well known yet. The aim of this study was to describe the manipulative dexterity, strength, and manual eye coordination of patients with manifest and premanifest-HD compared to healthy individuals and to analyze its influence on ADLs and QoL.
View Article and Find Full Text PDFSensors (Basel)
January 2025
National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy.
In the medical field, there are several very different movement disorders, such as tremors, Parkinson's disease, or Huntington's disease. A wide range of motor and non-motor symptoms characterizes them. It is evident that in the modern era, the use of smart wrist devices, such as smartwatches, wristbands, and smart bracelets is spreading among all categories of people.
View Article and Find Full Text PDFCells
January 2025
Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA.
Huntington's disease (HD) is an inherited neurodegenerative disease characterized by uncontrolled movements, emotional disturbances, and progressive cognitive impairment. It is estimated to affect 4.3 to 10.
View Article and Find Full Text PDFCells
December 2024
Neural Dynamics Laboratory, Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia.
Neurological disorders (NDs), such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and schizophrenia, represent a complex and multifaceted health challenge that affects millions of people around the world. Growing evidence suggests that disrupted neuronal calcium signalling contributes to the pathophysiology of NDs. Additionally, calcium functions as a ubiquitous second messenger involved in diverse cellular processes, from synaptic activity to intercellular communication, making it a potential therapeutic target.
View Article and Find Full Text PDFGenetics
January 2025
Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA.
Mismatch repair (MMR) is a highly conserved DNA repair pathway that recognizes mispairs that occur spontaneously during DNA replication and coordinates their repair. In Saccharomyces cerevisiae, Msh2-Msh3 and Msh2-Msh6 initiate MMR by recognizing and binding insertion deletion loops (in/dels) up to ∼ 17 nucleotides (nt.) and base-base mispairs, respectively; the two complexes have overlapping specificity for small (1-2 nt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!