In order to characterize the oxidation of metallic surfaces, the reactions of O2 with a number of Al(x)(-) and, for the first time, Ga(x)(-) clusters as molecular models have been investigated, and the results are presented here for x = 9-14. The rate coefficients were determined with FT-ICR mass spectrometry under single-collision conditions at O2 pressures of ~10(-8) mbar. In this way, the qualitatively known differences in the reactivities of the even- and odd-numbered clusters toward O2 could be quantified experimentally. To obtain information about the elementary steps, we additionally performed density functional theory calculations. The results show that for both even- and odd-numbered clusters the formation of the most stable dioxide species, [M(x)O2](-), proceeds via the less stable peroxo species, [M(x)(+)···O2(2-)](-), which contains M-O-O-M moieties. We conclude that the formation of these peroxo intermediates may be a reason for the decreased reactivity of the metal clusters toward O2. This could be one of the main reasons why O2 reactions with metal surfaces proceed more slowly than Cl2 reactions with such surfaces, even though O2 reactions with both Al metal and Al clusters are more exothermic than are reactions of Cl2 with them. Furthermore, our results indicate that the spin-forbidden reactions of (3)O2 with closed-shell clusters and the spin-allowed reactions with open-shell clusters to give singlet [M(x)(+)···O2(2-)](-) are the root cause for the observed even/odd differences in reactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja4125548DOI Listing

Publication Analysis

Top Keywords

reactions metal
12
clusters
9
single-collision conditions
8
reactions
8
surfaces reactions
8
even- odd-numbered
8
odd-numbered clusters
8
metal clusters
8
reaction rates
4
rates closed-shell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!