Leaf inclination angle distribution directly decides the amount of radiation interception by vegetation canopy, and also, decides the size and direction of the incident radiation, being the key parameter in quantitative remote sensing. This paper simulated the leaf inclination angle distribution of the main tree species in Daxing'an Mountains forest region based on the Campbell ellipsoid distribution model and iterative method, and quantitatively analyzed the fitting results of canopy with and without leaf stratification as well as the effects of tree age group on the leaf inclination angle distribution. For the test 6 main tree species, the leaf inclination angle distribution was in planophile shape, and the mean leaf inclination angle was smaller for coniferous tree than for broadleaved tree. Whether with or without stratify, the fitting result and the measured result were basically identical. For Betula platyphylla and Larix gmelinii, the correlation coefficient between the simulated and measured values was 0.8268 and 0.8192, and the root mean square error was 3.7% and 4.3% respectively, indicating that the Campbell model was reliable applied for forest canopy. Considering the effects of tree age group, though the leaf inclination angle distribution trend with leaf stratification had no correlation with age group, the mean leaf inclination angle of young L. gmelinii was relatively smaller than that mature one, suggesting that age group had positive effects on the numerical design of leaf inclination angle distribution and negative effects on the numerical design of extinction coefficient.
Download full-text PDF |
Source |
---|
Plant Commun
December 2024
Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan' Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding/Fuzhou Branch, National Center of Rice Improvement of China/National Engineering Laboratory of Rice/South Base of National Key Laboratory of Hybrid Rice of China, Fuzhou 350003, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
Leaf angle is a major agronomic trait that determines plant architecture, which directly affects rice planting density, photosynthetic efficiency, and yield. The plant phytohormones brassinosteroids (BRs) and the MAPK signaling cascade are known to play crucial roles in regulating the leaf angle, but the underlying molecular mechanisms are not fully understood. Here, we report a rice WRKY family transcription factor gene, OsWRKY72, which positively regulates leaf angle by affecting lamina joint development and BR signaling.
View Article and Find Full Text PDFPlant Physiol
December 2024
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
BMC Ecol Evol
December 2024
Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China.
Under the background of global climate change, climate warming has led to an increase in insect herbivory, which significantly affects the growth, survival, and regeneration of forest plants in the warm temperate zone of China. Plants can adopt defense responses to adapt to insect defoliation. Therefore, field experiments were conducted on five common warm temperate species, Quercus acutissima, Quercus serrata, Quercus aliena, Quercus dentata, and Robinia pseudoacacia.
View Article and Find Full Text PDFHeliyon
October 2024
Planning Division, Ministry of Planning, Government of the People's Republic of Bangladesh, Bangladesh.
Sci Rep
October 2024
Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.
Salt stress is becoming a major issue for the world's environment and agriculture economy. Different iron [Fe] sources can give an environmentally friendly alternative for salt-affected soil remediation. In this study the effects of Iron sulfate on Luffa cylindrica (Sponge gourd) cultivated in normal and saline water irrigated soil were examined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!