The brain has a central role in the regulation of energy stability of the organism. It is the organ with the highest energetic demands, the most susceptible to energy deficits, and is responsible for coordinating behavioral and physiological responses related to food foraging and intake. Dietary interventions have been shown to be a very effective means to extend lifespan and delay the appearance of age-related pathological conditions, notably those associated with brain functional decline. The present review focuses on the effects of these interventions on brain metabolism and cerebral redox state, and summarizes the current literature dealing with dietary interventions on brain pathology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3926116 | PMC |
http://dx.doi.org/10.1016/j.redox.2013.12.021 | DOI Listing |
Sci Rep
January 2025
Department of Botany, Lahore College for Women University, Lahore, Pakistan.
The present study was designed to highlight the ameliorative role of iron nanoparticles (FeNPs) against drought stress in spinach (Spinacia oleracea L.) plants. A pot experiment was performed in two-way completely randomize design with three replicates.
View Article and Find Full Text PDFAgeing Res Rev
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China. Electronic address:
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington disease, pose serious threats to human health, leading to substantial economic burdens on society and families. Despite extensive research, the underlying mechanisms driving these diseases remain incompletely understood, impeding effective diagnosis and treatment. In recent years, growing evidence has highlighted the crucial role of oxidative stress in the pathogenesis of various neurodegenerative diseases.
View Article and Find Full Text PDFJ Adv Res
January 2025
The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:
Background: The balance of redox states is crucial for maintaining physiological homeostasis. For decades, the focus has been mainly on the concept of oxidative stress, which is involved in the mechanism of almost all diseases. However, robust evidence has highlighted that reductive stress, the other side of the redox spectrum, plays a pivotal role in the development of various diseases, particularly those related to metabolism and cardiovascular health.
View Article and Find Full Text PDFInorg Chem
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
The emission of NH has been reported to pose a serious threat to both human health and the environment. To efficiently eliminate NH, catalysts for the selective catalytic oxidation of NH (NH-SCO) have been intensively studied. FeO-based catalysts were found to exhibit superior NH oxidation activity; however, the low N selectivity made it less attractive in practical applications.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.
The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!