The Structural and Biochemical Database (SBD), developed as part of the US NSF-funded Assembling the Fungal Tree of Life (AFTOL), is a multi-investigator project. It is a major resource to present and manage morphological and biochemical information on Fungi and serves as a phyloinformatics tool for the scientific community. It also is an important resource for teaching mycology. The database, available at http://aftol.umn.edu, includes new and previously published subcellular data on Fungi, supplemented with images and literature links. Datasets automatically combined in NEXUS format from the site permit independent and combined (with molecular data) phylogenetic analyses. Character lists, a major feature of the site, serve as primary reference documents of subcellular and biochemical characters that distinguish taxa across the major fungal lineages. The character lists illustrated with images and drawings are informative for evolutionary and developmental biologists as well as educators, students and the public. Fungal Subcellular Ontology (FSO), developed as part of this effort is a primary initiative to provide a controlled vocabulary describing subcellular structures unique to Fungi. FSO establishes a full complement of terms that provide an operating ontological framework for the database. Examples are provided for using the database for teaching.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3905944 | PMC |
http://dx.doi.org/10.5598/imafungus.2013.04.02.11 | DOI Listing |
Bio Protoc
January 2025
Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, USA.
Arbuscular mycorrhizal (AM) fungi engage in symbiotic relationships with plants, influencing their phosphate (Pi) uptake pathways, metabolism, and root cell physiology. Despite the significant role of Pi, its distribution and response dynamics in mycorrhizal roots remain largely unexplored. While traditional techniques for Pi measurement have shed some light on this, real-time cellular-level monitoring has been a challenge.
View Article and Find Full Text PDFMicroorganisms
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
has a strong cadmium-enrichment ability, posing a potential threat to human health. However, the cadmium tolerance and detoxification mechanisms of are not understood. We investigated the physiological responses, subcellular distribution, and chemical forms of cadmium in two strains (1504 and L130) with contrasting cadmium tolerance.
View Article and Find Full Text PDFMol Plant Pathol
January 2025
Faculty of Bioscience Engineering, Ghent University, Gent, Belgium.
In the coevolutionary process between plant pathogens and hosts, pathogen effectors, primarily proteinaceous, engage in interactions with host proteins, such as plant transcription factors (TFs), during the infection process. This review delves into the intricate interplay between TFs and effectors, a key aspect in the prolonged and complex battle between plants and pathogens. Effectors strategically manipulate TFs using diverse tactics.
View Article and Find Full Text PDFJ Microbiol Biotechnol
December 2024
College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea.
Extracellular vesicles (EVs) have garnered attention in research for their potential as biochemical transporters and immune modulators, crucial for regulating the host immune system. The present study was conducted to isolate and characterize EVs from Gram negative bacteria (EVs) and investigate their proteomic profile and immune responses. Isolation of EVs was carried out using ultracentrifugation method.
View Article and Find Full Text PDFScience
January 2025
Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
Single-cell decisions made in complex environments underlie many bacterial phenomena. Image-based transcriptomics approaches offer an avenue to study such behaviors, yet these approaches have been hindered by the massive density of bacterial messenger RNA. To overcome this challenge, we combined 1000-fold volumetric expansion with multiplexed error-robust fluorescence in situ hybridization (MERFISH) to create bacterial-MERFISH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!