AI Article Synopsis

Article Abstract

Analyzing the molecular architecture of native multiprotein complexes via biochemical methods has so far been difficult and error prone. Protein complex isolation by affinity purification can define the protein repertoire of a given complex, yet, it remains difficult to gain knowledge of its substructure or modular composition. Here, we introduce SDS concentration gradient induced decomposition of protein complexes coupled to quantitative mass spectrometry and in silico elution profile distance analysis. By applying this new method to a cellular transport module, the IFT/lebercilin complex, we demonstrate its ability to determine modular composition as well as sensitively detect known and novel complex components. We show that the IFT/lebercilin complex can be separated into at least five submodules, the IFT complex A, the IFT complex B, the 14-3-3 protein complex and the CTLH complex, as well as the dynein light chain complex. Furthermore, we identify the protein TULP3 as a potential new member of the IFT complex A and showed that several proteins, classified as IFT complex B-associated, are integral parts of this complex. To further demonstrate EPASIS general applicability, we analyzed the modular substructure of two additional complexes, that of B-RAF and of 14-3-3-ε. The results show, that EPASIS provides a robust as well as sensitive strategy to dissect the substructure of large multiprotein complexes in a highly time- as well as cost-effective manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4014293PMC
http://dx.doi.org/10.1074/mcp.O113.033233DOI Listing

Publication Analysis

Top Keywords

ift complex
16
complex
13
elution profile
8
quantitative mass
8
mass spectrometry
8
multiprotein complexes
8
protein complex
8
modular composition
8
ift/lebercilin complex
8
complex demonstrate
8

Similar Publications

Enhanced Prediction of CO-Brine Interfacial Tension at Varying Temperature Using a Multibranch-Structure-Based Neural Network Approach.

Langmuir

January 2025

Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116023, P. R. China.

Interfacial tension () between CO and brine depends on chemical components in multiphase systems, intricately evolving with a change in temperature. In this study, we developed a convolutional neural network with a multibranch structure (MBCNN), which, in combination with a compiled data set containing measurement data of 1716 samples from 13 available literature sources at wide temperature and pressure ranges (273.15-473.

View Article and Find Full Text PDF

Due to the complex physical properties of low-permeability glutenite reservoirs, the oil recovery rate with conventional development is low. Surfactants are effective additives for enhanced oil recovery (EOR) due to their good ability of wettability alteration and interfacial tension (IFT) reduction, but the reason why imbibition efficiencies vary with different types of surfactants and the mechanism of enhanced imbibition in the glutenite reservoirs is not clear. In this study, the imbibition efficiency and recovery of surfactants including the nonionic, anionic, and cationic surfactants as well as nanofluids were evaluated and compared with produced water (PW) using low-permeability glutenite core samples from the Lower Urho Formation in the Mahu oil field.

View Article and Find Full Text PDF

Dyneins are huge motor protein complexes that are essential for cell motility, cell division, and intracellular transport. Dyneins are classified into three major subfamilies, namely cytoplasmic, intraflagellar-transport (IFT), and ciliary dyneins, based on their intracellular localization and functions. Recently, several near-atomic resolution structures have been reported for cytoplasmic/IFT dyneins.

View Article and Find Full Text PDF

How cells regulate the size of their organelles remains a fundamental question in cell biology. Cilia, with their simple structure and surface localization, provide an ideal model for investigating organelle size control. However, most studies on cilia length regulation are primarily performed on several single-celled organisms.

View Article and Find Full Text PDF

Juno's highly elliptical polar orbits provide unprecedented in-situ observations of the electrodynamic interaction between Jupiter and its volcanic moon Io. These observations occur in regions never sampled before both near Io's orbit and near Jupiter's ionosphere and at distances between the two. Magnetic field data obtained during multiple traversals of magnetic field lines mapping to Io's orbit reveal remarkably rich and complex magnetic signatures near flux tubes connected to Io's orbital position.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!