Measuring resistant-genotype transmission of malaria parasites: challenges and prospects.

Parasitol Res

Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen,

Published: April 2014

Increased gametocytemia in infections with resistant strains of Plasmodium species and their enhanced transmissibility are a matter of concern in planning and evaluating the impact of malaria control strategies. Various studies have determined weekly gametocyte carriage in response to antimalarial drugs in clinical trials. The advent of molecular biology techniques makes it easy to detect and quantify gametocytes, the stages responsible for transmission, and to detect resistant genotypes of the parasite. With the validation of molecular markers of resistance to certain antimalarial drugs, there is a need to devise a simpler formula that could be used with these epidemiological antimalarial resistance tools. Theoretical models for transmission of resistant malaria parasites are difficult to deploy in epidemiological studies. Therefore, devising a simple formula that determines the potential resistant-genotype transmission of malaria parasites should provide further insights into understanding the spread of drug resistance. The present perspective discusses gametocytogenesis in the context of antimalarial treatment and drug resistance. It also highlights the difficulties in applying the available theoretical models of drug resistance transmission and suggests Rashad's devised formula that could perhaps be used in determining potentially transmissible resistant genotypes as well as in mapping areas with high potential risk for the transmission of drug-resistant malaria. The suggested formula makes use of the data on gametocytes and resistant genotypes of malaria parasites, detected by molecular techniques in a certain geographical area within a particular point in time, to calculate the potential risk of resistant genotype transmission.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00436-014-3789-9DOI Listing

Publication Analysis

Top Keywords

malaria parasites
16
resistant genotypes
12
drug resistance
12
resistant-genotype transmission
8
transmission malaria
8
antimalarial drugs
8
theoretical models
8
potential risk
8
transmission
7
malaria
6

Similar Publications

Factors associated with contracting border malaria: A systematic and meta-analysis.

PLoS One

January 2025

School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa.

Vector resistance, human population movement, and cross-border malaria continue to pose a threat to the attainment of malaria elimination goals. Border malaria is prominent in border regions characterised by poor access to health services, remoteness, and vector abundance. Human socio-economic behaviour, vectoral behaviour, access and use of protective methods, age, sex, and occupation have been identified in non-border regions as key predictors for malaria.

View Article and Find Full Text PDF

Repellency and toxicity of long-lasting insecticide-treated bed nets (LLINs) to bed bugs.

PLoS One

January 2025

Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America.

Vector control is essential for eliminating malaria, a vector-borne parasitic disease responsible for over half a million deaths annually. Success of vector control programs hinges on community acceptance of products like long-lasting insecticide-treated nets (LLINs). Communities in malaria-endemic regions often link LLIN efficacy to their ability to control indoor pests such as bed bugs (Cimex lectularius L.

View Article and Find Full Text PDF

Imaging malaria parasites across scales and time.

J Microsc

January 2025

Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany.

The idea that disease is caused at the cellular level is so fundamental to us that we might forget the critical role microscopy played in generating and developing this insight. Visually identifying diseased or infected cells lays the foundation for any effort to curb human pathology. Since the discovery of the Plasmodium-infected red blood cells, which cause malaria, microscopy has undergone an impressive development now literally resolving individual molecules.

View Article and Find Full Text PDF

Introduction: Malaria molecular surveillance (MMS) can provide insights into transmission dynamics, guiding national control programs. We previously designed AmpliSeq assays for MMS, which include different traits of interest (resistance markers and deletions), and SNP barcodes to provide population genetics estimates of and parasites in the Peruvian Amazon. The present study compares the genetic resolution of the barcodes in the AmpliSeq assays with widely used microsatellite (MS) panels to investigate population genetics of Amazonian malaria parasites.

View Article and Find Full Text PDF

A better understanding of malaria epidemiology in both asymptomatic and symptomatic individuals is essential for developing strategies to control the disease. This study was conducted to determine infection prevalence and its associated factors among people living in Franceville (urban area) and in the villages of Pana and Mvengue (rural areas) in south-east Gabon between April and July 2022. This cross-sectional study was conducted among all consenting residents of Franceville, Mvengue, and Pana between April and July 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!