AI Article Synopsis

  • A new bending-magnet beamline has been constructed at the UVSOR-III synchrotron radiation light source, designed for research in photoluminescence, transmission, and reflection spectroscopy.
  • The beamline features a 2.5 m normal-incidence monochromator and utilizes Kirkpatrick-Baez optics to achieve a high photon flux and brilliance, with a specific acceptance angle of 40 mrad horizontally and 14 mrad vertically.
  • To enhance energy resolution, an off-plane Eagle-type monochromator is employed, successfully suppressing higher-order light below ~11 eV to less than 0.1%.

Article Abstract

A new bending-magnet beamline with a 2.5 m normal-incidence monochromator has been constructed to serve with a light source in the visible-vacuum-ultraviolet region for photoluminescence, transmission and reflection spectroscopies of solids at the UVSOR-III 750 MeV synchrotron radiation light source. The aim is to pave the way to establishing a beamline with high photon flux, high brilliance, high energy-resolution, high linear-polarization and low higher-order light. To obtain high photon flux and brilliance, the acceptance angle of the bending-magnet radiation was designed to be 40 mrad (H) × 14 mrad (V) and the post-mirror system employed Kirkpatrick-Baez optics. The incidence angle of the incoming light to the optical elements, except to the gratings, was set to a grazing angle in order to keep a degree of linear polarization. For achieving high energy-resolution, an off-plane Eagle-type monochromator was adopted. Higher-order unwanted light in the energy range below ∼11 eV was suppressed to be less than 0.1%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945421PMC
http://dx.doi.org/10.1107/S1600577513032931DOI Listing

Publication Analysis

Top Keywords

light source
8
high photon
8
photon flux
8
high energy-resolution
8
high
6
light
5
design performance
4
performance vis-vuv
4
vis-vuv photoluminescence
4
photoluminescence beamline
4

Similar Publications

Automated Plate Reader-Based Assays of Light-Activated GPCRs.

Methods Mol Biol

December 2024

Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.

In the emerging field of optogenetics, light-sensitive G-protein coupled receptors (GPCRs) allow for the temporally precise control of canonical cell signaling pathways. Expressing, stimulating, and measuring the activity of light-sensitive GPCRs (e.g.

View Article and Find Full Text PDF

Mushrooms have proven to be a valuable source of diverse bioactive compounds that can hold substantial potential for preventing and managing various diseases. This research focused on examining the numerous bioactive compounds found in () (Cooke & Massee) Priest mushrooms, particularly those obtained from ethyl acetate and dichloromethane extracts. Polyphenols, flavonoids, tannins, and alkaloids were also evaluated by chemical analysis.

View Article and Find Full Text PDF

Unlabelled: The bacterial genus includes species found in environmental habitats like soil and water, as well as taxa adapted to be host-associated or pathogenic. High genetic diversity may allow for this habitat flexibility, but the specific genes underlying switches between habitats are poorly understood. One lineage of has undergone a substantial habitat change by evolving from a presumed soil-dwelling ancestral state to thrive in floral nectar.

View Article and Find Full Text PDF

Two-dimensional (2D) high-entropy transition metal dichalcogenides (HETMDs) have gained significant interest due to their structural properties and correlated possibilities for high-end devices. However, the controlled synthesis of 2D HETMDs presents substantial challenges owing to the distinction in the inherent characteristics among diverse metal elements in the synthesis, such as saturated vapor pressure of precursors and formation energy of products. Here, we present the synthesis of a 2D HETMD single crystal with 0.

View Article and Find Full Text PDF

Background: Previous studies have indicated a potential association between gut microbiota and diverticular disease. However, the precise nature of this relationship remains unclear. In light of this, we decided to use a bidirectional two-sample Mendelian randomization (MR) study to investigate the causal relationship between gut microbiota and intestinal diverticular disease in greater depth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!