Although the Morris water maze (MWM) is the most frequently used protocol to examine hippocampus-dependent learning in mice, not much is known about the spatio-temporal dynamics of underlying plasticity processes. Here, we studied molecular and cellular hippocampal plasticity mechanisms during early and late phases of spatial learning in the MWM. Quantitative in situ hybridization for the immediate early genes zif268 and Homer1a (H1a) revealed phase-dependent differences in their expression between areas CA1 and CA3. During the initial learning phase, CA1 expression levels of the molecular plasticity marker H1a, but not of the activity reporter gene zif268, were related to task proficiency; whereas no learning-specific changes could be detected in CA3. Simultaneously, the ratio of surface-expressed NMDAR subunits NR2A and NR2B was downregulated as measured by acute slice biotinylation assay, while the total number of surface NMDARs was unaltered. When intrinsic 'somatic' and synaptic plasticity in the CA1-region of hippocampal slices were examined, we found that early learning promotes intrinsic neuronal plasticity as manifested by a reduction of spike frequency adaptation and postburst afterhyperpolarization. At the synaptic level, however, maintenance of long-term potentiation (LTP) in all learning groups was impaired which is most likely due to 'intrinsic' learning-induced LTP which occluded any further electrically induced LTP. Late learning, in contrast, was characterized by re-normalized H1a, NR2A and NR2B expression and neuronal firing, yet a further strengthening of learning-induced LTP. Together, our data support a precisely timed cascade of complex molecular and subcellular transformations occurring from early to late MWM learning.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00429-014-0722-zDOI Listing

Publication Analysis

Top Keywords

plasticity mechanisms
8
morris water
8
water maze
8
early late
8
nr2a nr2b
8
learning-induced ltp
8
learning
7
plasticity
6
distinct simultaneously
4
simultaneously active
4

Similar Publications

Risk-taking is a concerning yet prevalent issue during adolescence and can be life-threatening. Examining its etiological sources and evolving pathways helps inform strategies to mitigate adolescents' risk-taking behavior. Studies have found that unfavorable environmental factors, such as adverse childhood experiences (ACEs), are associated with momentary levels of risk-taking in adolescents, but little is known about whether ACEs shape the developmental trajectory of risk-taking.

View Article and Find Full Text PDF

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

Microplastic Migration and Transformation Pathways and Exposure Health Risks.

Environ Pollut

January 2025

Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA. Electronic address:

Plastics play a crucial role in modern life, but improper use and disposal have resulted in microplastics becoming widespread in the environment, raising significant concerns about both the environment and human health. Extensive research has explored the transformation mechanisms, bioaccumulation, ecological impacts, and health risks associated with microplastics. The present review first analyzes the migration, transformation, and degradation pathways of microplastics on a global scale, and then synthesizes current knowledge on the types, sources, and migration pathways of microplastics in soil, atmosphere, and aquatic environments, emphasizing transformation mechanisms like photo-aging and microbial degradation, and detailing their ecological and human health impacts.

View Article and Find Full Text PDF

Marine litter and microplastics (MPs) represent pressing environmental challenges; however, the impact of marine litter on airborne MPs near marine litter hotspot remains unexplored. In this study, we simultaneously collected airborne MPs, weather factors, and air pollutants in a village near a marine litter hotspot across different seasons in Taiwan. Multiple methods were employed to evaluate whether the marine litter hotspot was a source of airborne MPs.

View Article and Find Full Text PDF

Flexible plastic packaging (FPP) is a growing waste source in the United States. Currently, FPP has a recycling rate of only 2% in the U.S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!