In this Letter, CeO₂: Er³⁺, Tm³⁺, Yb³⁺ inverse opal with near-infrared to near-infrared upconversion emission was prepared by polystyrene colloidal crystal templates, and the influence of photonic bandgap on the upconversion emission was investigated. Comparing with the reference sample, suppression of the blue or red upconversion luminescence was observed in the inverse opals. It is interesting that the near-infrared upconversion emission located at about 803 nm was enhanced due to the inhibition of visible upconversion emission in the inverse opals. Additionally, the variety of upconversion emission mechanisms was observed and discussed in the CeO₂: Er³⁺, Tm³⁺, Yb³⁺ inverse opals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.39.000918 | DOI Listing |
Front Chem
January 2025
Nanophotonics Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli, India.
An interesting approach of including an upconverter in the MoS counter electrode can yield broadband light harvesting Pt-free DSSC assembly. Here different upconverter (UC) nanoparticles (Yb, Er incorporated NaYF, YF, CeO & YO) were synthesized and loaded in MoS thin film by hydrothermal method. The inclusion of UCs in MoS films exposed without any secondary formation of upconverters and the uniform deposition of the films are confirmed through XRD and FESEM analysis respectively.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern South Lake Road, Changchun, 130033, China.
Round-trip energy transfer (RTET) in the popular Er/Yb upconversion (UC) system is a newly discovered mechanism for the red emission of Er through Yb as an intermediate ion. However, the importance of the RTET still remains a question. Here, we show in cubic YO that the new mechanism defeats conventional ones and dominates the red emission in both UC and down-shifting (DS) luminescence for a wide concentration range of Yb.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
January 2025
Maebashi-Institute of Technology, Systems Life Engineering, Gunma, 371-0816 Japan. Electronic address:
Introduction: The successful diagnosis and treatment of early-stage breast cancer enhances the quality of life of patients. As a promising alternative to recently developed magnetic resonance imaging-guided radiotherapy, we proposed fluorescence molecular imaging-guided photodynamic therapy (FMI-guided PDT), which requires no expensive equipment. In the FMI simulations, ICG-C11 which has emission peaks at near-infrared wavelengths was used as the FMI agent.
View Article and Find Full Text PDFMolecules
January 2025
College of Chemistry and Chemical Engineering, Central South University, Changsha 410017, China.
Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu, Tb, Ce) with the structural flexibility and tunability of coordination polymers.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China.
A transparent fluoroborosilicate glass ceramic was designed for the controllable precipitation of fluoride nanocrystals and to greatly enhance the photoluminescence of active ions. Through the introduction of BO into fluorosilicate glass, the melting temperature was decreased from 1400 to 1050 °C, and the abnormal crystallization in the fabrication process of fluorosilicate glass was avoided. More importantly, the controlled crystallizations of KZnF and KYbF in fluoroborosilicate glass ceramics enhanced the emission of Mn and Mn-Yb dimers by 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!