Some basic proteins enable microtubule protein to form special assembly products in vitro, known as double-walled microtubules. Using histones (H1, core histones) as well as the human encephalitogenic protein to induce the formation of double-walled microtubules, we made the following electron microscopic observations: (1) Double-walled microtubules consist of an "inner" microtubule which is covered by electron-dense material, apparently formed from the basic protein, and by a second tubulin wall. (2) The tubulin of the second wall seems to be arranged as protofilaments, surrounding the inner microtubule in a helical or ring-like manner. (3) The surface of double-walled microtubules lacks the projections of microtubule-associated proteins, usually found on microtubules. (4) In the case of protofilament ribbons (incomplete microtubules), H1 binds exclusively to their convex sides that correspond to the surface of microtubules. Zn2+-induced tubulin sheets, consisting in contrast to microtubules of alternately arranged protofilaments, are covered by H1 on both surfaces. Furthermore, multilayered sheet aggregates appeared. The results indicate that the basic proteins used interact only with that protofilament side which represents the microtubule surface. In accordance with this general principle, models on the structure of double-walled microtubules and multilayered tubulin sheets were derived.
Download full-text PDF |
Source |
---|
Biotechnol Bioeng
December 2017
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
Triple negative breast cancer (TNBC) is an aggressive sub-type of breast cancer that rarely responds to conventional chemotherapy. Therefore, novel agents or new routes need to be developed to improve treatment efficacy and diminish severe side-effects of anti-cancer agents in TNBC patients. This study explores a novel localized co-delivery platform with potential application against TNBC.
View Article and Find Full Text PDFJ Am Chem Soc
June 2017
Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States.
This paper describes the supramolecular assembly of a macrocyclic β-sheet containing residues 16-22 of the β-amyloid peptide, Aβ. X-ray crystallography reveals that the macrocyclic β-sheet assembles to form double-walled nanotubes, with an inner diameter of 7 nm and outer diameter of 11 nm. The inner wall is composed of an extended network of hydrogen-bonded dimers.
View Article and Find Full Text PDFBiochem J
July 2014
*Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, U.S.A.
Cell Tissue Res
September 2009
Southern Federal University, Rostov-on-Don, Russia.
In order to explore neuroglial relationships in a simple nervous system, we have studied the ultrastructure of the crayfish stretch receptor, which consists of only two mechanoreceptor neurons enwrapped by glial cells. The glial envelope comprises 10-30 glial layers separated by collagen sheets. The intercellular space between the neuronal and glial membranes is generally less than 10-15 nm in width.
View Article and Find Full Text PDFGen Physiol Biophys
December 2003
Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia.
Unusual regions of densely packed membranous tubules known as tubular aggregates (TAs) have been observed in skeletal muscle fibres of mammals under numerous pathological conditions but also in health. Their causality is unclear. It is neither known whether TAs are destructive and should be treated or whether they have a compensating function in an endangered muscle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!