The TWIK-related K(+) channel, TREK-1, has recently emerged as an attractive therapeutic target for the development of a novel class of analgesic drugs. It has been reported that TREK-1 -/- mice were more sensitive than wild-type mice to painful stimuli, suggesting that activation of TREK-1 could result in pain inhibition. Here we report the synthesis of a series of substituted caffeate esters (12a-u) based on the hit compound CDC 2 (cinnamyl 3,4-dihydroxyl-α-cyanocinnamate). These analogs were evaluated for their ability to modulate TREK-1 channel by electrophysiology and for their in vivo antinociceptive activity (acetic acid induced-writhing assay) leading to the identification a series of novel molecules able to activate TREK-1 and displaying potent analgesic activity in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2014.01.049DOI Listing

Publication Analysis

Top Keywords

substituted caffeate
8
caffeate esters
8
trek-1 channel
8
trek-1
6
synthesis structure-activity
4
structure-activity relationship
4
relationship study
4
study substituted
4
esters antinociceptive
4
antinociceptive agents
4

Similar Publications

Our research group previously identified graviquinone (1) as a promising antitumor metabolite that is formed in situ when the antioxidant methyl caffeate scavenges free radicals. Furthermore, it exerted a DNA damaging effect on cancer cells and a DNA protective effect on normal keratinocytes. To expand and explore chemical space around qraviquinone, in the current work we synthesized 9 new alkyl-substituted derivatives and tested their in vitro antitumor potential.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists made eight new compounds using a method that combines caffeic acid with some other chemicals.
  • They tested these compounds to see how well they stop a substance that causes inflammation in certain immune cells.
  • The best ones worked even better than a reference compound, and they figured out how these new compounds work by studying how they connect to their target in the body.
View Article and Find Full Text PDF

Phenolic Compound Biotransformation by Trametes versicolor ATCC 200801 and Molecular Docking Studies.

Appl Biochem Biotechnol

April 2020

Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Barão de Jeremoabo, Salvador, BA, 40170-115, Brazil.

The filamentous fungus Trametes versicolor is a rich source of laccase (Tvlac). Laccases catalyze reactions that convert substituted phenol substrates into diverse derivatives through aromatic oxidation. We investigated methyl p-coumarate, methyl ferulate, and methyl caffeate biotransformation by Trametes versicolor ATCC 200801.

View Article and Find Full Text PDF

Suppression of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) along with nitric oxide reduction in RAW 264.7 cells by 7,8-dihydroxy-4-methylcoumarin, ethyl p-coumarate, ethyl caffeate and ethyl ferulate drove us to search structural-analogues of the aforementioned compounds through structure-based drug design. Docking studies revealed that substituted cinnamic acids and their ethyl esters (2-7c) showed higher GoldScore-fitness (GSF) and non-bonding interactions with target proteins than 7,8-dihydroxy-4-methylcoumarin (1a) and 7,8-dihydroxy-5-methylcoumarin (1b).

View Article and Find Full Text PDF

O-Methylation of N-acetylserotonin (NAS) has been identified as the bottleneck in melatonin biosynthesis pathway. In the present paper, caffeic acid O-methyltransferase from Arabidopsis thaliana (AtCOMT) was engineered by rational design to improve its catalytic efficiency in conversion of NAS to melatonin. Based on the notable difference in the terminal structure of caffeic acid and NAS, mutants were designed to strengthen the interactions between the substrate binding pocket of the enzyme and the terminal structure of the unnatural substrate NAS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!