Inherited microbial symbionts can modulate host susceptibility to natural enemy attack. A wider range of symbionts influence host population demography without altering individual susceptibility, and it has been suggested that these may modify host disease risk through altering the rate of exposure to natural enemies. We present the first test of this thesis, specifically testing whether male-killing symbionts alter the epidemiology of a sexually transmitted infection (STI) carried by its host. STIs are typically expected to show female-biased epidemics, and we first present a simple model which indicates that male-biased STI epidemics may occur where symbionts create female-biased population sex ratios. We then examined the dynamics of a STI in the ladybird beetle Adalia bipunctata, which is also host to a male-killing bacterium. We present evidence that male-biased epidemics of the STI are observed in natural populations when the male-killer is common. Laboratory experiments did not support a role for differential susceptibility of male and female hosts to the STI, nor a protective role for the symbiont, in creating this bias. We conclude that the range of symbionts likely to alter parasite epidemiology will be much wider than previously envisaged, because it will additionally include those that impact host demography alone.

Download full-text PDF

Source
http://dx.doi.org/10.1086/674827DOI Listing

Publication Analysis

Top Keywords

range symbionts
8
symbionts alter
8
symbionts
6
host
6
sti
5
disease epidemiology
4
epidemiology arthropods
4
arthropods altered
4
altered presence
4
presence nonprotective
4

Similar Publications

Culture-dependent and -independent studies have provided access to symbiont genes and the functions they play for host sponges. Thus, this work investigates the diversity, presence of genes of pharmacological interest, biological activities and metabolome of the bacteria isolated from the sponges Aplysina caissara and Aplysina fulva collected on the southwestern Atlantic Coast. The genes for Polyketide Synthases types I and II and Nonribosomal Peptide Synthetases were screened in more than 200 bacterial strains obtained, from which around 40% were putatively novel.

View Article and Find Full Text PDF

Multigene, genus-wide phylogenetic studies have uncovered the limited taxonomic resolution power of commonly used gene markers, particularly of rRNA genes, to discriminate closely related species of the nematode genus Heterorhabditis. In addition, conflicting tree topologies are often obtained using the different gene markers, which limits our understanding of the phylo- and co-phylogenetic relationships and biogeography of the entomopathogenic nematode genus Heterorhabditis. Here we carried out phylogenomic reconstructions using whole nuclear and mitochondrial genomes, and whole ribosomal operon sequences, as well as multiple phylogenetic reconstructions using various single nuclear and mitochondrial genes.

View Article and Find Full Text PDF

Antibiotics threaten scleractinian corals, but their accumulation patterns and physiological effects on corals in natural reefs remain unclear. This study investigated antibiotic occurrence in seawater and two coral species, Galaxea fascicularis and Pocillopora damicornis, and explored the physiological effects of bioaccumulated antibiotics in a fringing reef of the South China Sea. Nineteen antibiotic components were detected in seawater, with total antibiotic concentrations (ΣABs) ranging from 17.

View Article and Find Full Text PDF

Unlabelled: Strain-level variation among host-associated bacteria often determines host range and the extent to which colonization is beneficial, benign, or pathogenic. is a beneficial symbiont of the light organs of fish and squid with known strain-specific differences that impact host specificity, colonization efficiency, and interbacterial competition. Here, we describe how the conserved global regulator, H-NS, has a strain-specific impact on a critical colonization behavior: biofilm formation.

View Article and Find Full Text PDF

Exploring endophytic fungi from Cynodon dactylon: GC-MS profiling and biological activity.

Fungal Genet Biol

December 2024

National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology-Fungi, MACS- Agharkar Research Institute, Gopal Ganesh Agharkar Road, Pune 411 004, Maharashtra, India. Electronic address:

The rapid decline of significant plant species due to deforestation and slow regrowth has endangered many trees that are crucial for producing life-saving medications. This dual crisis of conserving plant biodiversity while meeting pharmaceutical demands necessitates innovative solutions. Endophytic fungi, naturally occurring symbionts within plants, present an eco-friendly and economically viable alternative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!