Are long chain acyl CoAs responsible for suppression of mitochondrial metabolism in hibernating 13-lined ground squirrels?

Comp Biochem Physiol B Biochem Mol Biol

Department of Biology, University of Western Ontario, London, ON N6A5B8, Canada. Electronic address:

Published: April 2014

AI Article Synopsis

  • Hibernation significantly reduces metabolism in 13-lined ground squirrels, with torpid squirrels showing a marked decrease in mitochondrial respiration compared to those aroused from torpor or active in summer.
  • Researchers found that the inhibition of respiration in torpid squirrels is likely due to the accumulation of long-chain fatty acyl CoAs, specifically palmitoyl CoA, affecting succinate transport into mitochondria.
  • Despite adding carnitine to counteract the palmitoyl CoA effect, it did not restore respiration rates, indicating that other mitochondrial transporters may also be involved in reducing metabolic activity during hibernation.

Article Abstract

Hibernation in 13-lined ground squirrels (Ictidomys tridecemlineatus) is associated with a substantial suppression of whole-animal metabolism. We compared the metabolism of liver mitochondria isolated from torpid ground squirrels with those from interbout euthermic (IBE; recently aroused from torpor) and summer euthermic conspecifics. Succinate-fuelled state 3 respiration, calculated relative to mitochondrial protein, was suppressed in torpor by 48% and 44% compared with IBE and summer, respectively. This suppression remains when respiration is expressed relative to cytochrome c oxidase activity. We hypothesized that this suppression was caused by inhibition of succinate transport at the dicarboxylate transporter (DCT) by long-chain fatty acyl CoAs that may accumulate during torpor. We predicted, therefore, that exogenous palmitoyl CoA would inhibit respiration in IBE more than in torpor. Palmitoyl CoA inhibited respiration ~70%, in both torpor and IBE. The addition of carnitine, predicted to reverse palmitoyl CoA suppression by facilitating its transport into the mitochondrial matrix, did not rescue the respiration rates in IBE or torpor. Liver mitochondrial activities of carnitine palmitoyl transferase did not differ among IBE, torpor and summer animals. Although palmitoyl CoA inhibits succinate-fuelled respiration, this suppression is likely not related exclusively to inhibition of the DCT, and may involve additional mitochondrial transporters such as the adenine-nucleotide transporter.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpb.2014.02.002DOI Listing

Publication Analysis

Top Keywords

palmitoyl coa
16
ibe torpor
12
acyl coas
8
13-lined ground
8
ground squirrels
8
torpor summer
8
torpor
7
suppression
6
ibe
6
respiration
6

Similar Publications

produces the mycotoxin fumonisin B (FB), which disrupts sphingolipid biosynthesis by inhibiting ceramide synthase and affects the health of plants, animals, and humans. The means by which protects itself from its own mycotoxin are not completely understood. Some fumonisin () cluster genes do not contribute to the biosynthesis of the compound, but their function has remained enigmatic.

View Article and Find Full Text PDF

Clinical mastitis (CM) is a prevalent and severe inflammatory disease in dairy cows affecting the mammary glands. Fatty acid (FA) metabolism and associated enzymes are crucial for many physiological and pathological processes in dairy cows. However, the relationships among FA metabolism, FA-associated enzymes, and CM, as well as the mechanisms underlying their interactions, in dairy cows are not fully understood.

View Article and Find Full Text PDF

Integrated metabolomics and microbiome analysis reveal blended oil diet improves meat quality of broiler chickens by modulating flavor and gut microbiota.

Anim Nutr

December 2024

State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.

This study was to evaluate the effects of different dietary oils in chicken diets on meat quality, lipid metabolites, the composition of volatile compounds, and gut microbiota. Nine hundred female 817 crossbred broilers at one day old with an average body weight of 43.56 ± 0.

View Article and Find Full Text PDF

This study aimed to examine the impact of dietary carbohydrate to lipid (CHO/L) ratio on the growth, reproductive, and offspring performance of broodstock yellow catfish, and to elucidate the metabolic differences between mothers and offspring using lipidomics. Five isonitrogenous and isoenergetic diets with varying CHO/L ratios (0.65, 1.

View Article and Find Full Text PDF

An Integrated Profiling of Liver Metabolome and Transcriptome of Pigs Fed Diets with Different Starch Sources.

Animals (Basel)

November 2024

Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong En-gineering Technology Research Center of animal Meat quality and Safety Control and Evaluation, Guangzhou 510640, China.

Diets containing higher-amylose-content starches were proved to have some beneficial effects on monogastric animals, such as promoting the proliferation of intestinal probiotics. However, current research on the effects of diets with different starch sources on animals at the extraintestinal level is still very limited. We hypothesized that diets with different starch sources may affect lipid-related gene expression and metabolism in the liver of pigs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!