Influenza virus assembles in the budozone, a cholesterol-/sphingolipid-enriched ("raft") domain at the apical plasma membrane, organized by hemagglutinin (HA). The viral protein M2 localizes to the budozone edge for virus particle scission. This was proposed to depend on acylation and cholesterol binding. We show that M2-GFP without these motifs is still transported apically in polarized cells. Employing FRET, we determined that clustering between HA and M2 is reduced upon disruption of HA's raft-association features (acylation, transmembranous VIL motif), but remains unchanged with M2 lacking acylation and/or cholesterol-binding sites. The motifs are thus irrelevant for M2 targeting in cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2014.02.014 | DOI Listing |
BMC Endocr Disord
December 2024
Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran.
Cell Rep
November 2024
Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China. Electronic address:
Cholesterol metabolism reprogramming plays essential roles in hepatocellular carcinoma (HCC). However, precisely how cholesterol metabolism is dysregulated is not clear. Here, we show that the palmitoyltransferase ZDHHC3 and depalmitoylase ABHD17A regulate HCC cell cholesterol biosynthesis by dynamically S-acylating SREBP cleavage-activating protein (SCAP).
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, Australia. Electronic address:
The partitioning of viral fusion peptides in lipid membranes with varying order was investigated due to the fusion mechanism being a potential therapeutic approach. Using a planar bilayer model and advanced techniques such as neutron reflectometry (NR) and quartz crystal microbalance with dissipation (QCM-D), the structural aspects of peptide-lipid interactions were explored. The study focused on two target membranes: one forming a liquid-ordered domain and the other forming a liquid-disordered domain.
View Article and Find Full Text PDFTalanta
February 2025
State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Dadao, Nanjing, 211198, China. Electronic address:
Developing efficient and comprehensive analysis methods for metabolomics and lipidomics in the biological tissues and body fluids is essential for understanding the disease mechanisms. Although various two-dimensional liquid chromatography-mass spectrometry (2D-LC-MS) methods have been proposed to expand metabolite coverage, achieving higher efficiency in integrated metabolomics and lipidomics studies remains a technical challenge. In this work, a novel 4in1 online analysis system with excellent reproducibility and mass accuracy was constructed for metabolomics and lipidomics study in various biological samples from atherosclerotic mice.
View Article and Find Full Text PDFJ Food Sci
December 2024
Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, China.
Coconut endosperm residue is an abundant and low-cost resource of dietary fiber, but the low soluble fiber content limits its functional properties and applications in the food industry. To improve the hypolipidemic and hypoglycemic properties, coconut endosperm residue fiber (CERF) was modified by superfine-grinding and mix enzymatic hydrolysis alone, or combined with acetylation or hydroxypropylation. The effects of these modifications on the structure and functional properties were studied using scanning electron microscopy, Fourier-transformed infrared spectroscopy, and in vitro tests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!