Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Traumatic injury is the leading cause of potentially preventable lost years of life in the Western world and exsanguination is the most potentially preventable cause of post-traumatic death. With mature trauma systems and experienced trauma centres, extra-abdominal sites, such as the pelvis, constitute the most frequent anatomic site of exsanguination. Haemorrhage control for such bleeding often requires surgical adjuncts most notably interventional radiology (IR). With the usual paradigm of surgery conducted within an operating room and IR procedures within distant angiography suites, responsible clinicians are faced with making difficult decisions regarding where to transport the most physiologically unstable patients for haemorrhage control. If such a critical patient is transported to the wrong suite, they may die unnecessarily despite having potentially salvageable injuries. Thus, it seems only logical that the resuscitative operating room of the future would have IR capabilities making it the obvious geographic destination for critically unstable patients, especially those who are exsanguinating. Our trauma programme recently had the opportunity to conceive, design, build, and operationalise a purpose-designed hybrid trauma operating room, designated as the resuscitation with angiographic percutaneous techniques and operative resuscitation (RAPTOR) suite, which we believe to be the first such resource designed primarily to serve the exsanguinating trauma patient. The project was initiated after consultations between the trauma programme and private philanthropists regarding the greatest potential impacts on regional trauma care. The initial capital construction costs were thus privately generated but coincided with a new hospital wing construction allowing the RAPTOR to be purpose-designed for the exsanguinating patient. Many trauma programmes around the world are now starting to navigate the complex process of building new facilities, or else retrofitting existing ones, to address the need for single-site flexible haemorrhage control. This manuscript therefore describes the many considerations in the design and refinement of the physical build, equipment selection, human factors evaluation of new combined treatment paradigms, and the final introduction of a RAPTOR protocol in order that others may learn from our initial efforts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.injury.2014.01.021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!