Anthropogenic stressors, including chemical contamination and temperature stress, may contribute to increased disease susceptibility in aquatic animals. Specifically, the organophosphate pesticide malathion has been detected in surface waters inhabited by threatened and endangered salmon. In the presence of increasing water temperatures, malathion may increase susceptibility to disease and ultimately threaten salmon survival. This work examines the effect of acute and sublethal exposures to malathion on ocean-type subyearling Chinook salmon held under two temperature regimes. Chinook salmon were exposed to malathion at optimal (11 °C) or elevated (19 and 20 °C) temperatures. The influence of temperature on the acute toxicity of malathion was determined by generating 96-h lethal concentration (LC) curves. A disease challenge assay was also used to assess the effects of sublethal malathion exposure. The malathion concentration that resulted in 50% mortality (LC50; 274.1 μg L(-1)) of the Chinook salmon at 19 °C was significantly less than the LC50 at 11 °C (364.2 μg L(-1)). Mortality increased 11.2% in Chinook salmon exposed to malathion at the elevated temperature and challenged with Aeromonas salmonicida compared to fish held at the optimal temperature and exposed to malathion or the carrier control. No difference in disease challenge mortality was observed among malathion-exposed and unexposed fish at the optimal temperature. The interaction of co-occurring stressors may have a greater impact on salmon than if they occur in isolation. Ecological risk assessments considering the effects of an individual stressor on threatened and endangered salmon may underestimate risk when additional stressors are present in the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2014.01.079 | DOI Listing |
Aging Cell
January 2025
Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
Aging is a major risk factor for poor outcomes following respiratory infections. In animal models, the most severe outcomes of respiratory infections in older hosts have been associated with an increased burden of senescent cells that accumulate over time with age and create a hyperinflammatory response. Although studies using coronavirus animal models have demonstrated that removal of senescent cells with senolytics, a class of drugs that selectively kills senescent cells, resulted in reduced lung damage and increased survival, little is known about the role that senescent cells play in the outcome of influenza A viral (IAV) infections in aged mice.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Toxicology Centre, University of Saskatchewan, Saskatoon S7N 5B3, Canada.
-(1,3-Dimethylbutyl)-'-phenyl--phenylenediamine-quinone (6PPD-Q) is a rubber-tire derivative which leaches into surface waters from roadway runoff, from tire particles and has been identified as a possible driver of urban runoff mortality syndrome in coho salmon. Sensitivity to this toxicant is highly variable across fish species and life stages. With environmental concentrations meeting or exceeding toxicity thresholds in sensitive fishes, the potential for ecologically relevant effects is significant.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Austral de Chile, Valdivia, Chile. Electronic address:
Piscirickettsiosis causes the highest mortality in Atlantic salmon (Salmo salar) farming, and prophylactic treatment has not provided complete protection to date. In this study, we analyzed the immune and metabolic responses of Atlantic salmon inoculated with live and inactivated Piscirickettsia salmonis, monitoring plasma markers related to immune and stress responses. The fish were inoculated with inactivated P.
View Article and Find Full Text PDFEpilepsia
January 2025
Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
Objective: Somatic variants causing epilepsy are challenging to detect, as they are only present in a subset of brain cells (e.g., mosaic), resulting in low variant allele frequencies.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of California, San Diego, La Jolla, CA, USA.
Background: Pathological changes of Alzheimer's disease (AD) occur in the locus coeruleus (LC) years before clinical symptoms. This may affect LC activity that can be indexed by changes in pupil dilation. AD also disrupts connections between related but functionally distinct cortical areas leading to visual feature binding deficits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!