Pilocarpine-induced epilepsy is associated with actin cytoskeleton reorganization in the mossy fiber-CA3 synapses.

Epilepsy Res

Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun, Jilin Province 130021, PR China. Electronic address:

Published: March 2014

Dramatic structural changes have been demonstrated in the mossy fiber-CA3 synapses in the post status epilepticus (SE) animals, suggesting a potential reorganization of filamentous actin (F-actin) network occurring in the hippocampus. However, until now the long-term effects of SE on the synaptic F-actin have still not been reported. In this study, phalloidin labeling combined with confocal microscopy and protein analyses were adopted to investigate the effects of pilocarpine treatment on the F-actin in the C57BL/6 mice. As compared to the controls, there was ∼ 43% reduction in F-actin density in the post SE mice. Quantitative analysis showed that the labeling density and the puncta number were significantly decreased after pilocarpine treatment (p<0.01, n=5 mice per group, Student's t-test). The puncta of F-actin in the post SE group tended to be highly clustered, while those in the controls were generally distributed evenly. The mean puncta size of F-actin puncta was 0.73±0.19μm(2) (n=1102 puncta from 5 SE mice) in the experimental group, significantly larger than that in the controls (0.51±0.10μm(2), n=1983 puncta from 5 aged-matched control mice, p<0.01, Student's t-test). These observations were well consistent with the alterations of postsynaptic densities in the same region, revealed by immunostaining of PSD95, suggesting the reorganization of F-actin occurred mainly postsynaptically. Our results are indicative of important cytoskeletal changes in the mossy fiber-CA3 synapses after pilocarpine treatment, which may contribute to the excessive excitatory output in the hippocampal trisynaptic circuit.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.eplepsyres.2014.01.016DOI Listing

Publication Analysis

Top Keywords

mossy fiber-ca3
8
fiber-ca3 synapses
8
pilocarpine treatment
8
pilocarpine-induced epilepsy
4
epilepsy associated
4
associated actin
4
actin cytoskeleton
4
cytoskeleton reorganization
4
reorganization mossy
4
synapses dramatic
4

Similar Publications

Unlabelled: Neuronal hyperexcitability is a hallmark of amyotrophic lateral sclerosis (ALS) but its relationship with the TDP-43 aggregates that comprise the predominant pathology in over 90% of ALS cases remains unclear. Emerging evidence in tissue and slice culture models indicate that TDP-43 pathology induces neuronal hyperexcitability suggesting it may be responsible for the excitotoxicity long believed to be a major driver of ALS neuron death. Here, we characterized hyperexcitability and neurodegeneration in the hippocampus of doxycycline-regulatable rNLS8 mice (NEFH-tTA x tetO-hTDP-43ΔNLS), followed by treatment with AAV encoded DREADDs and anti-seizure medications to measure the effect on behavioral function and neurodegeneration.

View Article and Find Full Text PDF

The transcription factor Bcl11b has been linked to neurodevelopmental and neuropsychiatric disorders associated with synaptic dysfunction. Bcl11b is highly expressed in dentate gyrus granule neurons and is required for the structural and functional integrity of mossy fiber-CA3 synapses. The underlying molecular mechanisms, however, remained unclear.

View Article and Find Full Text PDF

Neurotrophin-3 from the dentate gyrus supports postsynaptic sites of mossy fiber-CA3 synapses and hippocampus-dependent cognitive functions.

Mol Psychiatry

April 2024

Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA.

At the center of the hippocampal tri-synaptic loop are synapses formed between mossy fiber (MF) terminals from granule cells in the dentate gyrus (DG) and proximal dendrites of CA3 pyramidal neurons. However, the molecular mechanism regulating the development and function of these synapses is poorly understood. In this study, we showed that neurotrophin-3 (NT3) was expressed in nearly all mature granule cells but not CA3 cells.

View Article and Find Full Text PDF

GluK2 Q/R editing regulates kainate receptor signaling and long-term potentiation of AMPA receptors.

iScience

October 2023

Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK.

Q/R editing of the kainate receptor (KAR) subunit GluK2 radically alters recombinant KAR properties, but the effects on endogenous KARs remain largely unexplored. Here, we compared GluK2 editing-deficient mice that express ∼95% unedited GluK2(Q) to wild-type counterparts that express ∼85% edited GluK2(R). At mossy fiber-CA3 (MF-CA3) synapses GluK2(Q) mice displayed increased postsynaptic KAR function and KAR-mediated presynaptic facilitation, demonstrating enhanced ionotropic function.

View Article and Find Full Text PDF

Presynaptic plasticity is an activity-dependent change in the neurotransmitter release and plays a key role in dynamic modulation of synaptic strength. Particularly, presynaptic potentiation mediated by cyclic adenosine monophosphate (cAMP) is widely seen across the animals and thought to contribute to learning and memory. Hippocampal mossy fiber-CA3 pyramidal cell synapses have been used as a model because of robust presynaptic potentiation in short- and long-term forms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!