Plastic waste is a special category of municipal solid waste. Plastic waste collection is featured with various alternatives of collection methods (curbside/drop-off) and separation methods (source-/post-separation). In the Netherlands, the collection routes of plastic waste are the same as those of other waste, although plastic is different than other waste in terms of volume to weight ratio. This paper aims for redesigning the collection routes and compares the collection options of plastic waste using eco-efficiency as performance indicator. Eco-efficiency concerns the trade-off between environmental impacts, social issues and costs. The collection problem is modeled as a vehicle routing problem. A tabu search heuristic is used to improve the routes. Collection alternatives are compared by a scenario study approach. Real distances between locations are calculated with MapPoint. The scenario study is conducted based on real case data of the Dutch municipality Wageningen. Scenarios are designed according to the collection alternatives with different assumptions in collection method, vehicle type, collection frequency and collection points, etc. Results show that the current collection routes can be improved in terms of eco-efficiency performance by using our method. The source-separation drop-off collection scenario has the best performance for plastic collection assuming householders take the waste to the drop-off points in a sustainable manner. The model also shows to be an efficient decision support tool to investigate the impacts of future changes such as alternative vehicle type and different response rates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2014.01.018DOI Listing

Publication Analysis

Top Keywords

plastic waste
24
collection
15
waste plastic
12
collection routes
12
waste
9
vehicle routing
8
eco-efficiency performance
8
collection alternatives
8
scenario study
8
vehicle type
8

Similar Publications

Sustainable pavement is essential for country development, offering durable, environmentally friendly, and cost-effective infrastructure. For Malaysia, sustainable pavement supports Sustainable Development Goals (SDGs) 9 and 11 while addressing road deterioration caused by increasing traffic volumes and loads. This deterioration shortens pavement service life and necessitates frequent maintenance, driving the need for innovative solutions.

View Article and Find Full Text PDF

The presence of microplastics (MPs) in aquatic ecosystem has become a pressing global concern. MPs pose a significant threat to aquatic ecosystems, with devastating consequences for both aquatic life and human health. Notably, freshwater ecosystems are particularly vulnerable to MPs pollution.

View Article and Find Full Text PDF

Selective Recycling of Mixed Polyesters via Heterogeneous Photothermal Catalysis.

Adv Mater

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China.

The selective recycling of mixed plastic wastes with similar structural units is challenging. While heterogeneous catalysis shows potential for selective recycling, challenges such as complex mass transfer at multiphase interfaces and unclear catalytic mechanisms have slowed progress. In this study, a breakthrough in recycling mixed polyester wastes is introduced using heterogeneous photothermal catalysis.

View Article and Find Full Text PDF

Advanced Catalysts for the Chemical Recycling of Plastic Waste.

Adv Mater

January 2025

Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.

Plastic products bring convenience to various aspects of the daily lives due to their lightweight, durability and versatility, but the massive accumulation of post-consumer plastic waste is posing significant environmental challenges. Catalytic methods can effectively convert plastic waste into value-added feedstocks, with catalysts playing an important role in regulating the yield and selectivity of products. This review explores the latest advancements in advanced catalysts applied in thermal catalysis, microwave-assisted catalysis, photocatalysis, electrocatalysis, and enzymatic catalysis reaction systems for the chemical recycling of plastic waste into valuable feedstocks.

View Article and Find Full Text PDF

The catalytic efficiency of sulfonated polystyrene foam waste (SPS) and sulfonated gamma alumina (SGA) in Friedel-Crafts type reactions was compared. All of the materials were studied using the state-of-the-art characterization techniques. SPS was found to carry a higher load of -SOH functional groups (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!