Object: Autophagy is a cellular mechanism of maintaining balance between protein synthesis and degradation; the latter can be induced by starvation and neurodegenerative disease. Spinal cord injury (SCI) induces necrosis and apoptosis. Autophagic flux has not yet been defined, especially the potential role of autophagy in relation to apoptosis in different tissue cells. The object of this study was to investigate the occurrence of autophagic flux and the potential role of autophagy and apoptosis post-SCI in rats.
Methods: Following creation of SCI in rats, activation of autophagic flux was detected at the protein (LC3, beclin1, and p62) and mRNA (beclin1) levels and on electron microscopy images. Distribution of LC3, colocalization of activated caspase-3, and changes in expression levels of bcl-2 and Bax were assessed to investigate the potential role of autophagy and apoptosis. Sprague-Dawley rats were used, and T9-10 hemitransection was performed. Expression levels of LC3, beclin1, p62, bcl-2, and Bax were assessed by Western blot analysis, and beclin1 mRNA levels were assessed by reverse transcription-polymerase chain reaction. Distribution of LC3 and colocalization of activated caspase-3 were analyzed by immunohistochemistry. Autophagosome formation was investigated by electron microscopy.
Results: The authors found a dramatic elevation in LC3 and beclin1 levels near the scar region. Using double staining, they observed that upregulation of LC3 started at 4 hours in neurons and at 3 days in astrocytes after SCI. Confocal images indicated that the percentage of neurons with apoptosis was reduced, while the percentage of astrocytes with apoptosis was high at 4 hours, 8 hours, and 1 day post-SCI but decreased sharply at 3 days. Electron microscopy images provided evidence of autophagosome formation. Elimination of p62 indicated occurrence of autophagic flux. Expression levels of bcl-2 and Bax were increased and decreased, respectively, near the injury site.
Conclusions: The results of this research demonstrated that autophagic flux is activated after SCI. Potentially, inhibition of apoptosis could be a target to promote neural recovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/2014.1.SPINE13237 | DOI Listing |
Nutrients
December 2024
Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia.
Importance: Although prolonged fasting has become increasingly popular, the favourable biological adaptations and possible adverse effects in humans have yet to be fully elucidated.
Objective: To investigate the effects of a three-day water-only fasting, with or without exercise-induced glycogen depletion, on autophagy activation and the molecular pathways involved in cellular damage accumulation and repair in healthy humans.
Design: A randomised, single-centre, two-period, two-sequence crossover trial.
Nutrients
December 2024
First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece.
Non-alcoholic fatty liver disease (NAFLD) is a major metabolic disorder with no established pharmacotherapy. Quercetin, a polyphenolic flavonoid, demonstrates potential hepatoprotective effects but has limited bioavailability. This study evaluates the impact of quercetin on NAFLD and assesses the roles of autophagy-related proteins in disease progression.
View Article and Find Full Text PDFArch Gerontol Geriatr
December 2024
Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China. Electronic address:
Food Sci Biotechnol
January 2025
Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101 Taiwan.
Unlabelled: Sarcopenic obesity, encompassing both muscle wasting and obesity, is relevant across individuals. (TS) has been shown to regulate glucose and lipid metabolisms. However, the efficacy and mechanisms of TS fruit (TSF) in sarcopenic obesity are unclear.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
Intracellular recycling via autophagy is governed by post-translational modifications of the autophagy-related (ATG) proteins. One notable example is ATG4-dependent delipidation of ATG8, a process that plays critical but distinct roles in autophagosome formation in yeast and mammals. Here, we aim to elucidate the specific contribution of this process to autophagosome formation in species representative of evolutionarily distant green plant lineages: unicellular green alga Chlamydomonas reinhardtii, with a relatively simple set of ATG genes, and a vascular plant Arabidopsis thaliana, harboring expanded ATG gene families.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!