We fabricated a single active layer quantum dot light-emitting diode device based on colloidal CdSe (core)/CdS (arm) tetrapod nanostructures capable of simultaneously producing room temperature electroluminesence (EL) peaks at two spectrally distinct wavelengths, namely, at ∼500 and ∼660 nm. This remarkable dual EL was found to originate from the CdS arms and CdSe core of the tetrapod architecture, which implies that the radiative recombination of injected charge carriers can independently take place at spatially distinct regions of the tetrapod. In contrast, control experiments employing CdSe-core-seeded CdS nanorods showed near-exclusive EL from the CdSe core. Time-resolved spectroscopy measurements on tetrapods revealed the presence of hole traps, which facilitated the localization and subsequent radiative recombination of excitons in the CdS arm regions, whereas excitonic recombination in nanorods took place predominantly within the vicinity of the CdSe core. These observations collectively highlight the role of morphology in the achievement of light emission from the different material components in heterostructured semiconductor nanoparticles, thus showing a way in developing a class of materials which are capable of exhibiting multiwavelength electroluminescence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn500030t | DOI Listing |
Biosensors (Basel)
December 2024
Department of Electrical-Electronics Engineering, Abdullah Gul University, Kayseri 38039, Türkiye.
detection suffers from slow analysis time and high costs, along with the need for specificity. While state-of-the-art electrochemical biosensors are cost-efficient and easy to implement, their sensitivity and analysis time still require improvement. In this work, we present a paper-based electrochemical biosensor utilizing magnetic core-shell FeO@CdSe/ZnS quantum dots (MQDs) to achieve fast detection, low cost, and high sensitivity.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States.
Time-resolved single molecule localization microscopy (TR-SMLM) with a 2 × 2 pixel fiber optic array camera was combined with time-correlated single photon counting (TCSPC) to obtain super-resolved fluorescence lifetime images of individual Cy3 dye molecules and individual colloidal CdSe/CdS/ZnS core/shell/shell semiconductor quantum dots (QDs). The characteristic blinking and bleaching behavior of the Cy3 and the blinking behavior of the QD emitters were used as distinguishing optical characteristics to isolate them and determine their centroid locations with spatial resolution below the optical diffraction limit. TCSPC was used to characterize the fluorescence lifetime and intensity corresponding to each emitter location.
View Article and Find Full Text PDFNano Lett
January 2025
Key Laboratory of Advanced Display and System Applications Education of Ministry, Shanghai University, 149 Yanchang Road, Shanghai 200072, China.
Indium phosphide (InP) quantum dots (QDs) are promising alternative heavy-metal CdSe QDs for light-emitting diode (LED) application. However, their highly reactive core surface is prone to oxidation, which reduces the photoluminescence quantum yield (PL QY) and impedes subsequent shell growth. Traditional etching methods using HF aqueous solution are problematic as water can induce reoxidation during or after etching.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Physics and Meteorology, School of Sciences, Sao Paulo State University (UNESP), Bauru, Sao Paulo 17033-360, Brazil.
The presence of toxic dyes in industrial waste dramatically diminishes the beneficial effects of remediation efforts. To overcome the hazardous impacts of dyes on biodiversity and environment, we integrated polymers into nanoparticles to substantially enhance their functionality and performance. 2 and 4 wt% of chitosan (CS) and 3 wt% of polyacrylic acid (PAA) doped cadmium selenide (CdSe) nanostructures (NSs) were prepared by co-precipitation approach.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Department of Materials Science, National University of Tainan, Tainan 700301, Taiwan.
We demonstrated that the aspect ratio (AR)-tunable CdSe/CdS dot-in-rod (DiR) nanostructures with quasi-type-II band structure were successively synthesized using the hot injection method. When the AR of CdSe/CdS DiR was tuned from 10 to 37, the exciton localization efficiency along the longitudinal CdS rod shell decreased from 57.9 to 15.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!