Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivium.

BMC Plant Biol

School of Environment, Natural Resources and Geography, College of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2DG, UK.

Published: February 2014

Background: The use of auxin-producing rhizosphere bacteria as agricultural products promises increased root production and therefore greater phosphate (Pi) uptake. Whilst such bacteria promote root production in vitro, the nature of the bacteria-plant interaction in live soil, particularly concerning any effects on nutrient uptake, are not known. This study uses Bacillus amyloliquefaciens FZB42, an auxin-producing rhizobacterium, as a dressing on Triticum aestivium seeds. It then examines the effects on root production, Pi uptake, Pi-related gene expression and organic carbon (C) exudation.

Results: Seed treatment with B. amyloliquefaciens FZB42 increased root production at low environmental Pi concentrations, but significantly repressed root Pi uptake. This coincided with an auxin-mediated reduction in expression of the Pi transporters TaPHT1.8 and TaPHT1.10. Applied exogenous auxin also triggered an increase in root C exudation. At high external Pi concentrations, root production was promoted by B. amyloliquefaciens FZB42, but Pi uptake was unaffected.

Conclusions: We conclude that, alongside promoting root production, auxin biosynthesis by B. amyloliquefaciens FZB42 both re-models Pi transporter expression and elevates organic C exudation. This shows the potential importance of rhizobacterial-derived auxin following colonisation of root surfaces, and the nature of this bacteria-plant interaction in soil.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015440PMC
http://dx.doi.org/10.1186/1471-2229-14-51DOI Listing

Publication Analysis

Top Keywords

root production
24
amyloliquefaciens fzb42
20
root
10
bacillus amyloliquefaciens
8
root exudation
8
triticum aestivium
8
increased root
8
nature bacteria-plant
8
bacteria-plant interaction
8
uptake
6

Similar Publications

Construction of Sub-nano Channels of Amino Pillar[6]arene Inspired Biomimetic Porous Roots for Specific Remove of Imazamox.

Chemistry

January 2025

State Key Laboratory of NBC Protection for Civilian, State Key Laboratory of NBC Protection for Civilian,, Beijing, CHINA.

The root ducts play an important role in the plant's transport of nutrients from the soil. Based on the selective transport characteristics of plant roots, amino pillar[6]arene bionic porous root sub-nano channel membrane were constructed to remove Imazamox. Imazamox (IM) is an effective imidazolinone herbicide frequently utilized in soybean fields to control a wide range of annual grasses and broad-leaved weeds.

View Article and Find Full Text PDF

Co-cropping of hyperaccumulators is still poorly understood, while associations between hyperaccumulators and other plant species may promote beneficial plant interactions and lead to increased metal phytoextraction from contaminated soils. The aim of this study was to evaluate the phytoextraction potential of the Ni-hyperaccumulator in different co-cropping combinations with and . Plants were grown in ultramafic soil in a growth chamber for 45 days and Al, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn concentrations in roots and leaves were analyzed.

View Article and Find Full Text PDF

The gene GAD1 encodes a glutamate decarboxylase, which is a rate-limiting enzyme for the biosynthesis of endogenous γ-aminobutyrate acid (GABA), but a potential role of GAD1 in regulating cadmium (Cd) tolerance needs to be further elucidated in plants. The objective of this study was to investigate Cd tolerance of creeping bentgrass (Agrostis stolonifera) and transgenic yeast (Saccharomyces cerevisiae) or Arabidopsis thaliana overexpressing AsGAD1. The Cd-tolerant creeping bentgrass cultivar LOFTSL-93 accumulated more endogenous GABA in relation to a significant upregulation of AsGAD1 in leaf and root than the Cd-sensitive W66569 in response to Cd stress.

View Article and Find Full Text PDF

Regulating potato tuber dormancy is crucial for crop productivity and food security. We conducted the first comprehensive physiological, transcriptomic, and metabolomic investigations of two varieties of long and short dormant potato tubers in order to clarify the mechanisms of dormancy release. In the current study, three different dormant stages of UGT (ungerminated tubers), MGT (minimally germinated tubers), and GT (germinated tubers) were obtained by treatment with the germination promoter gibberellin A and the germination inhibitor chlorpropham.

View Article and Find Full Text PDF

Sweet potato ( (L.) Lam.) is a tuber root crop with high economical potential and China is responsible for harvesting roughly 70% of the world production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!