Epistatic Control of Mammary Cancer Susceptibility in Mice may Depend on the Dietary Environment.

Hereditary Genet

Department of Biology, Nutrition, and Cell and Molecular Physiology, University of North Carolina, Chapel Hill North Carolina, 27599.

Published: June 2012

Recent studies have linked a high fat diet to the development of breast cancer, but any genetic basis for this association is poorly understood. We investigated this association with an epistatic analysis of seven cancer traits in a segregating population of mice with metastatic mammary cancer that were fed either a control or a high-fat diet. We used an interval mapping approach with single nucleotide polymorphisms to scan all 19 autosomes, and discovered a number of diet-independent epistatic interactions of quantitative trait loci (QTLs) affecting these traits. More importantly, we also discovered significant epistatic by diet interactions affecting some of the traits that suggested these epistatic effects varied depending on the dietary environment. An analysis of these interactions showed some were due to epistasis that occurred in mice fed only the control diet or only the high-fat diet whereas other interactions were generated by differential effects of epistasis in the two dietary environments. Some of the epistatic QTLs appeared to colocalize with cancer QTLs mapped in other mouse populations and with candidate genes identified from eQTLs previously mapped in this population, but others represented novel modifying loci affecting these cancer traits. It was concluded that these diet-dependent epistatic QTLs contribute to a genetic susceptibility of dietary effects on breast cancer, and their identification may eventually lead to a better understanding that will be needed for the design of more effective treatments for this disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3927415PMC
http://dx.doi.org/10.4172/2161-1041.1000108DOI Listing

Publication Analysis

Top Keywords

mammary cancer
8
dietary environment
8
breast cancer
8
cancer traits
8
fed control
8
high-fat diet
8
diet interactions
8
epistatic qtls
8
epistatic
7
cancer
7

Similar Publications

Objective: Cancer-related fatigue is one of the most common burdens of cancer patients. To date, most studies focused on fatigue during or after treatment. However, investigation of pretreatment fatigue is crucial to identify causal or risk factors other than cancer therapy and to enable timely fatigue management.

View Article and Find Full Text PDF

Exploring vimentin's role in breast cancer via PICK1 alternative polyadenylation and the miR-615-3p-PICK1 interaction.

Biofactors

January 2025

Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China.

Breast cancer continues to be a major health issue for women worldwide, with vimentin (VIM) identified as a crucial factor in its progression due to its role in cell migration and the epithelial-to-mesenchymal transition (EMT). This study focuses on elucidating VIM's regulatory mechanisms on the miR-615-3p/PICK1 axis. Utilizing the 4T1 breast cancer cell model, we first used RNA-seq and proteomics to investigate the changes in the APA of PICK1 following VIM knockout (KO).

View Article and Find Full Text PDF

Cold atmospheric plasma potentiates ferroptosis via EGFR(Y1068)-mediated dual axes on GPX4 among triple negative breast cancer cells.

Int J Biol Sci

January 2025

Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, 8 Changjiang Avenue, Tianjin 300100, China.

Cold atmospheric plasma (CAP) has been proposed as an emerging onco-therapeutics that can specifically kill cancer cells without harming healthy cells. Here we explore its potency in triggering ferroptosis in transformed cells using triple negative breast cancer as the disease model. Through the whole transcriptome sequencing, mass spectrometry analysis, point mutation, and a series of and molecular assays, we identified two signaling axes centered at EGFR(Y1068), i.

View Article and Find Full Text PDF

Adenylate cyclase family members have recently received attention as novel therapeutic targets. However, the significance of adenylate cyclase 9 (ADCY9) in breast cancer has not been elucidated. Here, we evaluated expression in breast cancer (BC) cell lines, and polymerase chain reaction array analysis was performed to determine the correlations between expression levels and 84 tumor-associated genes.

View Article and Find Full Text PDF

Faster Acquisition and Improved Image Quality of T2-Weighted Dixon Breast MRI at 3T Using Deep Learning: A Prospective Study.

Korean J Radiol

January 2025

Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Objective: The aim of this study was to compare image quality features and lesion characteristics between a faster deep learning (DL) reconstructed T2-weighted (T2-w) fast spin-echo (FSE) Dixon sequence with super-resolution (T2) and a conventional T2-w FSE Dixon sequence (T2) for breast magnetic resonance imaging (MRI).

Materials And Methods: This prospective study was conducted between November 2022 and April 2023 using a 3T scanner. Both T2 and T2 sequences were acquired for each patient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!