Insertion sequences (IS) are common transposable elements in Archaea. Intergenic IS elements are usually less harmful than intragenic ISs, simply because they are less likely to disrupt host gene function. However, because regulatory sequences are intergenic and upstream of genes, we hypothesized that not all intergenic regions are selectively equivalent for IS insertion. We tested this hypothesis by analyzing the distributions of intergenic IS elements within 155 fully sequenced archaeal genomes. Of the 22 genomes with enough IS elements for statistical analysis, five have significantly fewer ISs between divergently oriented neighboring genes than expected by chance, and seven have significantly more ISs between convergently oriented genes. Furthermore, of the 85 genomes with at least one expected IS within each of the three possible neighboring gene orientations (i.e., divergent, convergent, and tandem), 73 genomes have fewer ISs between divergently oriented genes than expected, and 60 have more ISs between convergently oriented genes than expected (both values deviate significantly from binomial probabilities of random distribution). We suspect that these non-random IS distributions are molded by natural selection resulting from differential disruption of neighboring gene regulation, and that this selective pressure has affected transposable element distributions in prokaryotes for billions of years.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912053PMC
http://dx.doi.org/10.4161/mge.27829DOI Listing

Publication Analysis

Top Keywords

genes expected
12
oriented genes
12
intergenic elements
8
fewer iss
8
iss divergently
8
divergently oriented
8
iss convergently
8
convergently oriented
8
neighboring gene
8
iss
5

Similar Publications

[Construction of black-bone silky fowl (Gallus gallus domesticus) families based on genetic diversity].

Zhongguo Zhong Yao Za Zhi

December 2024

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700, China.

Black-bone silky fowls(Gallus gallus domesticus) have a long history of medicinal use, with the origin in Taihe county, Jiangxi province. The unclear family composition, inbreeding rate, and effective population size were inconducive to the resource conservation or breed improvement of black-bone silky fowls. A genome-wide analysis was performed to evaluate the genetic diversity of 80 black-bone silky fowls from random mating in three farms in 2021 in terms of minor allele frequency(MAF), expected heterozygosity(H_e), observed heterozygosity(H_o), effective population size(N_e), and runs of homozygosity(ROH).

View Article and Find Full Text PDF

Unlabelled: Alzheimer's disease (AD) is a progressive neurological condition that causes brain shrinkage and cell death. This study aimed to identify the role of the NORAD/miR-26b-5p axis in AD. StarBase was used to examine the binding sequences of miR-26b-5p to LncRNA NORAD or its target genes, which were verified by a double luciferase reporter assay.

View Article and Find Full Text PDF

Efficient Gene Delivery Admitted by small Metabolites Specifically Targeting Astrocytes in the Mouse Brain.

Mol Ther

January 2025

School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Chinese Institute for Brain Research, Beijing 102206, China. Electronic address:

The development of efficient and targeted methods for delivering DNA in vivo has long been a major focus of research. In this study, we introduce a gene Delivery approach Admitted by small Metabolites, named gDAM, for the efficient and targeted delivery of naked DNA into astrocytes in the adult brains of mice. gDAM utilizes a straightforward combination of DNA and small metabolites, including glycine, L-proline, L-serine, L-histidine, D-alanine, Gly-Gly, and Gly-Gly-Gly, to achieve astrocyte-specific delivery of naked DNA, resulting in transient and robust gene expression in these cells.

View Article and Find Full Text PDF

The bHLH transcription factor DlbHLH68 positively regulates DlSPS1 expression to promote sucrose biosynthesis in longan.

Int J Biol Macromol

January 2025

College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:

Sucrose is an important factor affecting plant growth and fruit quality, but the molecular regulatory mechanism of sucrose biosynthesis in longan is not yet understood. Here, we characterized a transcription factor, DlbHLH68, positively regulates sucrose accumulation in longan. Subcellular localization and transcriptional activity analysis indicated that DlbHLH68 is a nuclear transcriptional activator.

View Article and Find Full Text PDF

Engineered Phage Enables Efficient Control of Gene Expression upon Infection of the Host Cell.

Int J Mol Sci

December 2024

CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Recently, we developed a spatial phage-assisted continuous evolution (SPACE) system. This system utilizes chemotaxis coupled with the growth of motile bacteria during their spatial range expansion in soft agar to provide fresh host cells for iterative phage infection and selection pressure for preserving evolved genes of interest carried by phage mutants. Controllable mutagenesis activated only in a subpopulation of the migrating cells is essential in this system to efficiently generate mutated progeny phages from which desired individuals are selected during the directed evolution process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!