Omnivory is extremely common in animals, yet theory predicts that when given a choice of resources specialization should be favored over being generalist. The evolution of a feeding phenotype involves complex interactions with many factors other than resource choice alone, including environmental heterogeneity, resource quality, availability, and interactions with other organisms. We applied an evolutionary simulation model to examine how ecological conditions shape evolution of feeding phenotypes (e.g., omnivory), by varying the quality and availability (absolute and relative) of plant and animal (prey) resources. Resulting feeding phenotypes were defined by the relative contribution of plants and prey to diets of individuals. We characterized organisms using seven traits that were allowed to evolve freely in different simulated environments, and we asked which traits are important for different feeding phenotypes to evolve among interacting organisms. Carnivores, herbivores, and omnivores all coexisted without any requirement in the model for a synergistic effect of eating plant and animal prey. Omnivores were most prevalent when ratio of plants and animal prey was low, and to a lesser degree, when habitat productivity was high. A key result of the model is that omnivores evolved through many different combinations of trait values and environmental contexts. Specific combinations of traits tended to form emergent trait complexes, and under certain environmental conditions, are expressed as omnivorous feeding phenotypes. The results indicate that relative availabilities of plants and prey (over the quality of resources) determine an individual's feeding class and that feeding phenotypes are often the product of convergent evolution of emergent trait complexes under specific environmental conditions. Foraging outcomes appear to be consequences of degree and type of phenotypic specialization for plant and animal prey, navigation and exploitation of the habitat, reproduction, and interactions with other individuals in a heterogeneous environment. Omnivory should not be treated as a fixed strategy, but instead a pattern of phenotypic expression, emerging from diverse genetic sources and coevolving across a range of ecological contexts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3925427PMC
http://dx.doi.org/10.1002/ece3.923DOI Listing

Publication Analysis

Top Keywords

feeding phenotypes
20
animal prey
16
plant animal
12
evolution feeding
8
quality availability
8
plants prey
8
emergent trait
8
trait complexes
8
environmental conditions
8
feeding
7

Similar Publications

Obligate parasites often trigger significant changes in their hosts to facilitate transmission to new hosts. The molecular mechanisms behind these extended phenotypes - where genetic information of one organism is manifested as traits in another - remain largely unclear. This study explores the role of the virulence protein SAP54, produced by parasitic phytoplasmas, in attracting leafhopper vectors.

View Article and Find Full Text PDF

Background: Meat goat production is a worldwide industry with products such as meat, milk, soap, and fiber being produced. There are approximately 2.6 million meat goats in the United States.

View Article and Find Full Text PDF

Intrauterine growth restriction (IUGR) caused by placental dysfunctions leads to fetal growth defects. Maternal microbiome and its metabolites have been reported to promote placental development. Milk fat globule membrane (MFGM) is known for its diverse bioactive functions, while the effects of gestational MFGM supplementation on the maternal gut microbiota, placental efficiency, and fetal development remained unclear.

View Article and Find Full Text PDF

Common salt (NaCl) causes developmental, behavioral, and physiological defects in .

Nutr Neurosci

January 2025

Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India.

Article Synopsis
  • The study investigates the toxicity of salt on obesity using Drosophila larvae and adult flies, testing varying salt concentrations (50-800 µM).
  • At lower concentrations (50 and 200 µM), significant weight gain and increased feeding behavior were observed, with larvae and adult flies displaying abnormal responses to temperature and light stimuli.
  • The findings reveal that while lower salt concentrations induce stronger adverse effects, higher concentrations deter feeding, suggesting a complex relationship between salt intake and obesity-related behaviors.
View Article and Find Full Text PDF

Adaptive radiation, whereby a clade pairs rapid speciation with rapid phenotypic evolution, can result in an uneven distribution of biodiversity across the Metazoan tree. The cichlid fishes of East Africa have undergone multiple adaptive radiations within the major rift lakes. Cichlid radiations are marked by divergence across distinct habitat gradients producing many morphological and behavioural adaptations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!