Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/cclm-2013-1111 | DOI Listing |
Disabil Rehabil
January 2025
Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway.
Purpose: The Trunk Impairment Scale-modified Norwegian version (TIS-modNV) measures trunk control for clinical and research purposes. This study examined the validity and reliability of the TIS-modNV in people with multiple sclerosis (pwMS).
Materials And Methods: Sixty-eight pwMS (mild to moderate) participated.
Pharmaceutics
January 2025
Department of Mathematical and Physical Sciences, Catholic University of Temuco, Temuco 4813302, Chile.
: A previous study investigated the in vitro release of methylene blue (MB), a widely used cationic dye in biomedical applications, from nanocellulose/nanoporous silicon (NC/nPSi) composites under conditions simulating body fluids. The results showed that MB release rates varied significantly with the nPSi concentration in the composite, highlighting its potential for controlled drug delivery. To further analyze the relationship between diffusion dynamics and the MB concentration, this study developed a finite element (FE) method to solve Fick's equations governing the drug delivery system.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Mechanical Engineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
This study presents a methodology for characterizing the constituent properties of composite materials by back-calculating from the laminate behavior under fatigue loading. Composite materials consist of fiber reinforcements and a polymer matrix, with the fatigue performance of the laminate governed by the interaction between these constituents. Due to the challenges in directly measuring the properties of individual fibers and the polymer matrix, a reverse-engineering approach was employed.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China.
Mid-infrared spectral analysis has long been recognized as the most accurate noninvasive blood glucose measurement method, yet no practical compact mid-infrared blood glucose sensor has ever passed the accuracy benchmark set by the USA Food and Drug Administration (FDA): to substitute for the finger-pricking glucometers in the market, a new sensor must first show that 95% of their glucose measurements have errors below 15% of these glucometers. Although recent innovative exploitations of the well-established Fourier-transform infrared (FTIR) spectroscopy have reached such FDA accuracy benchmarks, an FTIR spectrometer is too bulky. The advancements of quantum cascade lasers (QCLs) can lead to FTIR spectrometers of reduced size, but compact QCL-based noninvasive blood glucose sensors are not yet available.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
Goal: Current methodologies for assessing cerebral compliance using pressure sensor technologies are prone to errors and issues with inter- and intra-observer consistency. RAP, a metric for measuring intracranial compensatory reserve (and therefore compliance), holds promise. It is derived using the moving correlation between intracranial pressure (ICP) and the pulse amplitude of ICP (AMP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!