A recently developed Pseudomonas syringae recombineering system simplifies the procedure for installing specific mutations at a chosen genomic locus. The procedure involves transforming P. syringae cells expressing recombineering functions with a PCR product that contains desired changes flanked by sequences homologous to a target location. Cells transformed with the substrate undergo homologous recombination between the genomic DNA and the recombineering substrate. The recombinants are found by selection for traits carried by the recombineering substrate, usually antibiotic resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-62703-761-7_1 | DOI Listing |
Physiol Plant
December 2024
Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark.
The classic plant growth-promoting phytohormone cytokinin has been identified and established as a mediator of pathogen resistance in different plant species. However, the resistance effect of structurally different cytokinins appears to vary and may regulate diverse mechanisms to establish resistance. Hence, we comparatively analysed the impact of six different adenine- and phenylurea-type cytokinins on the well-established pathosystem Nicotiana tabacum-Pseudomonas syringae.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
December 2024
Department for Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
Ice-nucleating proteins (INPs) from bacteria like are among the most effective ice nucleators known. However, large INP aggregates with maximum ice nucleation activity (at approximately -2 °C) typically account for less than 1% of the overall ice nucleation activity in bacterial samples. This study demonstrates that polyols significantly enhance the assembly of INPs into large aggregates, dramatically improving bacterial ice nucleation efficiency.
View Article and Find Full Text PDFACS Nano
December 2024
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
Induction of systemic acquired resistance (SAR) in plants to control bacterial diseases has become an effective solution to the problems of agrochemical resistance and ecological environment damage caused by long-term and large-scale use of traditional bactericides. However, current SAR-inducing compounds are often unable to rapidly eliminate pathogenic bacteria in infected plant tissues to prevent further spread of the disease, severely restraining the potential for extensive application in agriculture. Herein, we address the limitations by developing a series of visible-light-absorbing aggregation-induced emission photosensitizers suitable for agricultural use.
View Article and Find Full Text PDFMol Plant Pathol
December 2024
Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
In Arabidopsis thaliana, the transcription factors WRKY7, WRKY11 and WRKY17 act as negative defence regulators against Pseudomonas syringae pv. tomato (Pst) DC3000. However, their coordinated regulation of gene expression has yet to be fully explored.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
Institute of Environmental Sciences, Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University, Rehovot, Israel.
Antibiotic secretion plays a pivotal role in bacterial interference competition; yet, the impact of environmental hydration conditions on such competition is not well understood. Here, we investigate how hydration conditions affect interference competition among bacteria, studying the interactions between the antibiotic-producing FZB42 and two bacterial strains susceptible to its antibiotics: 85-10 and DC3000. Our results show that wet-dry cycles significantly modify the response of the susceptible bacteria to both the supernatant and cells of the antibiotic-producing bacteria, compared to constantly wet conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!