It has been predicted that the development of thin-beam ultrasound could lead to an overestimation of mean blood velocity by up to 33% as beam width approaches 0% of vessel diameter. If both beam and vessel widths are known, in theory, this overestimation may be correctable. Therefore, we updated a method for determining the beam width of a Doppler ultrasound system, tested the utility of this technique and the information it provides to reliably correct for the error in velocity measurements, and explored how error-corrected velocity estimates impact the interpretation of in vivo data. Using a string phantom, we found the average beam width of four different probes varied across probes from 2.93 ± 0.05 to 4.41 ± 0.06 mm (mean ± SD) and with depth of insonation. Using this information, we tested the validity of a calculated correction factor to minimize the thin-beam error in mean velocity observed in a flow phantom with known diameter. Use of a correction factor reduced the overestimation from 39 ± 11 to 7 ± 9% (P < 0.05). Lastly, in vivo we explored how knowledge of beam width improves understanding of physiological flow conditions. In vivo, use of a correction factor reduced the overestimation of mean velocity from 23 ± 11 to -4 ± 9% (P < 0.05). Thus this large source of error is real, has been largely ignored by the early adaptors of Doppler ultrasound for vascular physiology studies in humans, and is correctable by the described techniques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035793 | PMC |
http://dx.doi.org/10.1152/japplphysiol.00027.2014 | DOI Listing |
J Craniofac Surg
January 2025
Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Baghdad, Bab- Almoadham, Medical City.
Pterygomaxillary separation (PMS) is an important step in Le Fort I osteotomy procedure, without which complete mobilization of the maxilla cannot be achieved. The aim of this study was to evaluate PMS patterns and their relationship with the anatomic measurements in Le Fort I osteotomy. In this prospective observational study cone beam computed tomography (CBCT) was used to measure the anatomic variables of the pterygomaxillary junction (PMJ) region including thickness, width, the distance between the most concave point at the lateral surface of PMJ and the greater palatine foramen (C-GPF), and the angle preoperatively, and the separation patterns postoperatively divided into the clean-cut type, maxillary sinus type, and the pterygoid fracture type.
View Article and Find Full Text PDFDentomaxillofac Radiol
January 2025
Department of Oral and Maxillofacial Radiology, School of Dentistry, Pusan National University, Yangsan, 50612, Korea.
Objectives: This study aimed to develop an automated method for generating clearer, well-aligned panoramic views by creating an optimized three-dimensional (3D) reconstruction zone centered on the teeth. The approach focused on achieving high contrast and clarity in key dental features, including tooth roots, morphology, and periapical lesions, by applying a 3D U-Net deep learning model to generate an arch surface and align the panoramic view.
Methods: This retrospective study analyzed anonymized cone-beam CT (CBCT) scans from 312 patients (mean age 40 years; range 10-78; 41.
Natl J Maxillofac Surg
November 2024
Department of Oral Medicine and Maxillofacial Radiology, Dr. G. D. Pol Foundations YMT Dental College and Hospital, Navi Mumbai, Maharashtra, India.
Introduction: The tympanic cavity contains three tiny bones, the malleus, incus, and stapes, which have a fundamental role in the transmission of sound. Recent research emphasizes the use of CBCT for the anatomic study of the temporal bone. The information about middle ear anatomy on CBCT scans is meager; hence, this retrospective study was conducted to identify and determine the various morphometrical parameters of the malleus using CBCT which can be helpful during reconstructive procedures for the otologic surgeon.
View Article and Find Full Text PDFTissue Eng Regen Med
January 2025
Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, 172 Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
Background: Traditionally, dental implants require a healing period of 4 to 9 months for osseointegration, with longer recovery times considered when bone grafting is needed. This retrospective study evaluates the clinical efficacy of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) during dental implant placement to expedite the osseointegration period for early loading.
Methods: Thirty patients (17 male, 13 female; mean age 55.
Clin Implant Dent Relat Res
February 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
Objectives: To compare the clinical effectiveness of a novel bioceramic (BC) with a control xenograft (BO) for guided bone regeneration (GBR) performed simultaneously with implant placement.
Materials And Methods: This clinical study enrolled patients with insufficient bone volume who required GBR during implant placement to increase bone width using either BC or BO. Outcome measures included a dimensional reduction in buccal bone thickness measured by cone beam computed tomography performed immediately post-surgery and at 6 months postoperatively (ΔHBBT), soft tissue healing at 14 days, 1 month, and 6 months postoperatively, and complications rates.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!