Mechanistic insight into highly efficient gas permeation and separation in a shape-persistent ladder polymer membrane.

Phys Chem Chem Phys

State Key Laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, Shanghai, 200237, China.

Published: April 2014

A fully atomistic simulation study is reported to provide mechanistic insight into the superior performance experimentally observed for a polymer membrane (Carta et al., Science, 2013, 339, 303-307). The membrane namely PIM-EA-TB is produced by a shape-persistent ladder polymer of intrinsic microporosity (PIM) with rigid bridged bicyclic ethanoanthracene (EA) and Tröger's base (TB). The simulation reveals that PIM-EA-TB possesses a larger surface area, a higher fraction free volume and a narrower distribution of torsional angles compared to PIM-SBI-TB, which consists of less rigid spirobisindane (SBI). The predicted surface areas of PIM-EA-TB and PIM-SBI-TB are 1168 and 746 m(2) g(-1), close to experimental values of 1120 and 745 m(2) g(-1), respectively. For five gases (CO2, CH4, O2, N2 and H2), the solubility and diffusion coefficients from simulation match well with experimental data, except for H2. The solubility coefficients decrease in the order of CO2 > CH4 > O2 > N2 > H2, while the diffusion coefficients increase following CH4 < CO2 < N2 < O2 < H2. In terms of the separation for CO2/N2, CO2/CH4 and O2/N2 gas pairs, PIM-EA-TB exhibits higher permselectivities than PIM-SBI-TA, in good agreement with experiment. From a microscopic perspective, this simulation study elucidates that the presence of bridged bicyclic units in PIM-EA-TB enhances the rigidity of polymer chains as well as the capability of gas permeation and separation, and the bottom-up insight could facilitate the rational design of new high-performance membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cp55498hDOI Listing

Publication Analysis

Top Keywords

mechanistic insight
8
gas permeation
8
permeation separation
8
shape-persistent ladder
8
ladder polymer
8
polymer membrane
8
simulation study
8
bridged bicyclic
8
co2 ch4
8
diffusion coefficients
8

Similar Publications

Animal models of kabuki syndrome and their applicability to novel drug discovery.

Expert Opin Drug Discov

January 2025

Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.

Introduction: Kabuki Syndrome (KS) is a rare genetic disorder characterized by distinctive facial features, intellectual disability, and multiple congenital anomalies. It is caused by pathogenic variants in the and genes. Despite its significant disease burden, there are currently no approved therapies for KS, highlighting the need for advanced research and therapeutic development.

View Article and Find Full Text PDF

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

After spinal cord injury (SCI), reactive astrocytes in the injured area are triggered after spinal cord injury (SCI) and to polarize into A1 astrocytes with a proinflammatory phenotype or A2 astrocytes with an anti-inflammatory phenotype. Monopolar spindle binder 2 (MOB2) induces astrocyte stellation, maintains cell homeostasis, and promotes neurite outgrowth; however, its role in the phenotypic transformation of reactive astrocytes remains unclear. Here, we confirmed for the first time that MOB2 is associated with A1/A2 phenotypic switching in reactive astrocytes following SCI in mice.

View Article and Find Full Text PDF

Downregulation of the Phosphatase PHLPP1 Contributes to NNK-induced Malignant Transformation of Human Bronchial Epithelial Cells (HBECs).

J Biol Chem

January 2025

Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University; Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China. Electronic address:

Cigarette smoking (CS) is one of the greatest health concerns, which can cause lung cancer. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific nitrosamine, and has been well-documented for its carcinogenic activity in both epidemiological and laboratory studies. PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1) and phosphatase and tensin homolog (PTEN) are two well-known phosphatase tumor suppressors that have been reported to be downregulated in human lung cancer tissues.

View Article and Find Full Text PDF

Decoding the SARS-CoV-2 Infection Process: Insights into Origin, Spread, and Therapeutic Approaches.

Microb Pathog

January 2025

Department of Bioengineering, Faculty of engineering, Integral University, Lucknow-226026, India. Electronic address:

Globally, over 768 million confirmed cases and 6.9 million deaths had been documented as of July 17, 2023. Coronaviruses have a relatively large RNA genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!