Uranyl (UO2(2+)), the predominant aerobic form of uranium, is present in the ocean at a concentration of ~3.2 parts per 10(9) (13.7 nM); however, the successful enrichment of uranyl from this vast resource has been limited by the high concentrations of metal ions of similar size and charge, which makes it difficult to design a binding motif that is selective for uranyl. Here we report the design and rational development of a uranyl-binding protein using a computational screening process in the initial search for potential uranyl-binding sites. The engineered protein is thermally stable and offers very high affinity and selectivity for uranyl with a Kd of 7.4 femtomolar (fM) and >10,000-fold selectivity over other metal ions. We also demonstrated that the uranyl-binding protein can repeatedly sequester 30-60% of the uranyl in synthetic sea water. The chemical strategy employed here may be applied to engineer other selective metal-binding proteins for biotechnology and remediation applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nchem.1856 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!