Chromatin remodeling has been newly established as an important cancer genome characterization and recent exome and whole-genome sequencing studies of hepatocellular carcinoma (HCC) showed that recurrent inactivating mutations in SWI/SNF subunits involved in the molecular basis of hepatocarcinogenesis. To test the hypothesis that genetic variants in the key subunits of SWI/SNF complexes may contribute to HCC susceptibility, we systematically assessed associations of genetic variants in SWI/SNF complexes with HCC risk using a two-staged case-control study in Chinese population. A set of 24 single nucleotide polymorphisms (SNPs) in SWI/SNF complexes were examined in stage 1 with 502 HCC patients and 487 controls and three promising SNPs (SMARCA4 rs11879293, rs2072382 and SMARCB1 rs2267032) were further genotyped in stage 2 comprising 501 cases and 545 controls for validation. SMARCA4 rs11879293 presented consistently significant associations with the risk of HCC at both stages, with an OR of 0.73 (95% CI: 0.62-0.87) using additive model in combined analysis. Moreover, the decreased risk of HCC associated with SMARCA4 rs11879293 AG/AA was more evident among HBsAg positive individuals (OR = 0.47, 95% CI: 0.27-0.80) in combined analysis. The study highlighted the potential role of the SWI/SNF complexes in conferring susceptibility to HCC, especially modified HCC risk by HBV infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930892 | PMC |
http://dx.doi.org/10.1038/srep04147 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia 46022, Spain.
The SWItch/Sucrose Non-Fermenting (SWI/SNF) complexes are evolutionarily conserved, ATP-dependent chromatin remodelers crucial for multiple nuclear functions in eukaryotes. Recently, plant BCL-DOMAIN HOMOLOG (BDH) proteins were identified as shared subunits of all plant SWI/SNF complexes, significantly impacting chromatin accessibility and various developmental processes in Arabidopsis. In this study, we performed a comprehensive characterization of mutants, revealing the role of BDH in hypocotyl cell elongation.
View Article and Find Full Text PDFGenes Chromosomes Cancer
January 2025
Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China.
SMARCA4-deficient lung cancer, including thoracic SMARCA4-deficient undifferentiated tumors and SMARCA4-deficient nonsmall-cell lung carcinomas, is a rare and aggressive disease characterized by rapid progression and poor prognosis. This cancer was identified as a distinct entity with specific morphologic and molecular features in the 2021 WHO Classification of Thoracic Tumors. Molecular alterations in SMARCA4 are specific to this type of lung cancer.
View Article and Find Full Text PDFHistopathology
January 2025
Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
Aims: Classification and risk stratification of endometrial carcinoma (EC) has transitioned from histopathological features to molecular classification, e.g. the ProMisE classifier, identifying four prognostic subtypes: POLE mutant (POLEmut) with almost no recurrence or disease-specific death events, mismatch repair deficient (MMRd) and no specific molecular profile (NSMP), with intermediate outcome and p53 abnormal (p53abn) with poor outcomes.
View Article and Find Full Text PDFJ Med Chem
January 2025
Foghorn Therapeutics, 500 Technology Square, Suite 700, Cambridge, Massachusetts 02139, United States.
BRM (SMARCA2) and BRG1 (SMARCA4) are mutually exclusive ATPase subunits of the mSWI/SNF (BAF) chromatin remodeling complex. BAF is an attractive therapeutic target because of its role in transcription, and mutations in the subunits of BAF are common in cancer and neurological disorders. Herein, we report the discovery of compound () as a potent allosteric inhibitor of the dual ATPase subunits from a high-throughput screening hit with a BRM IC of ∼27 μM.
View Article and Find Full Text PDFMod Pathol
January 2025
Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL. Electronic address:
Deep penetrating nevi (DPNs) are characterized by activating mutations in the MAP kinase and Wnt/beta-catenin pathways that result in large melanocytes with increased nuclear atypia, cytoplasmic pigmentation, and often mitotic activity. Together with a lack of maturation, this constellation of findings creates challenges for pathologists to distinguish deep penetrating nevus (DPN) from DPN-like melanoma. To assess the utility of next generation sequencing (NGS) in resolving this diagnostic dilemma, we performed NGS studies on 35 lesions including 24 DPNs and 11 DPN-like melanomas to characterize the specific genomic differences between the two groups and elucidate the genetic events involved in malignant transformation of DPNs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!