Culturing Caenorhabditis elegans in axenic medium leads to a twofold increase in lifespan and considering the similar phenotypical traits with dietary restricted animals, it is referred to as axenic dietary restriction (ADR). The free radical theory of aging has suggested a pivotal role for mitochondria in the aging process and previous findings established that culture in axenic medium increases metabolic rate. We asked whether axenic culture induces changes in mitochondrial functionality of C. elegans. We show that ADR induces increased electron transport chain (ETC) capacity, enhanced coupling efficiency and reduced leakiness of the mitochondria of young adult worms but not a decrease of ROS production capacity and in vivo H2O2 levels. The age-dependent increase in leak respiration and decrease in coupling efficiency is repressed under ADR conditions. Although ADR mitochondria experience a decrease in ETC capacity with age, they succeed to maintain highly efficient and well-coupled function compared to fully fed controls. This might be mediated by combination of a limited increase in supercomplex abundance and decreased individual CIV abundance, facilitating electron transport and ultimately leading to increased mitochondrial efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exger.2014.02.009 | DOI Listing |
Life Med
February 2024
Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
Ovarian aging is mainly characterized by a progressive decline in oocyte quantity and quality, which ultimately leads to female infertility. Various therapies have been established to cope with ovarian aging, among which exosome-based therapy is considered a promising strategy that can benefit ovarian functions via multiple pathways. Here, we isolated and characterized exosomes derived from ovarian follicular fluid and profiled the differential expression patterns of noncoding exosomal RNAs in young and aged women.
View Article and Find Full Text PDFNat Rev Mol Cell Biol
January 2025
MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
Activation of Ca channels in Ca stores in organelles and the plasma membrane generates cytoplasmic calcium ([Ca]) signals that control almost every aspect of cell function, including metabolism, vesicle fusion and contraction. Mitochondria have a high capacity for Ca uptake and chelation, alongside efficient Ca release mechanisms. Still, mitochondria do not store Ca in a prolonged manner under physiological conditions and lack the capacity to generate global [Ca] signals.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Guizhou Key Laboratory of New Quality Processing and Storage of Ecological Specialty Food; School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
Traditional dry-curing methods have a long cycle time and low efficiency, resulting in the inconsistent quality of dry-cured ham. By applying electrical stimulation (ES) technology in the dry-curing process, it was found that ES affected mitochondrial apoptosis by modulating the intracellular environment of muscle cells, which, in turn, enhanced the quality of dry-cured pork loin. Specifically, ES accelerated glycogen and ATP depletion, which led to a rapid decline in pH.
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States; Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States. Electronic address:
The mitochondrial flavoenzymes proline dehydrogenase (PRODH) and hydroxyproline dehydrogenase (PRODH2) catalyze the first steps of proline and hydroxyproline catabolism, respectively. The enzymes are targets for chemical probe development because of their roles in cancer cell metabolism (PRODH) and primary hyperoxaluria (PRODH2). Mechanism-based inactivators of PRODH target the FAD by covalently modifying the N5 atom, with N-propargylglycine (NPPG) being the current best-in-class of this type of probe.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, India-201306.
Introduction: Alzheimer's disease (AD) is a leading cause of dementia, characterized by progressive neurodegeneration and cognitive dysfunction. The disease aetiology is closely associated with proteinopathies, mitochondrial abnormalities, and elevated ROS generation, which are some of the primary markers for AD brains.
Objectives: The current research was intended to elucidate the chemical interaction of β-pinene against potential targets and evaluate its neuroprotective potential in ICV-STZ-induced sAD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!