Asymmetric flow field flow fractionation operated in a multidetector approach (A4F-MDA) is a powerful tool to perform size-classified nanoparticle analysis. Recently several publications mentioned insufficient recovery rates and even retention time shifts attributed to unspecific membrane-particle interactions. One hypothesis to explain this phenomenon is based on the surface charge (zeta-potential) of the membrane material and the particle. In this study, we investigated in how far the ζ-potential of A4F membrane and particles would determine the outcome of A4F in terms of feasibility, separation efficiency, retention time, and recovery rate, or whether other factors such as membrane morphology and particle size were equally important. We systematically studied the influence of the ζ-potential on the interactions between the most commonly used A4F membrane materials and two representative types of titanium dioxide nanoparticles (TiO2 NP). Furthermore the effect of different carrier media and additional surfactants on the surface charge of membranes and particles was investigated and the influence of the particle size and the particle concentration on the recovery rate was evaluated. We found that the eligibility of an A4F method can be predicted based on the ζ-potential of the NPs and the A4F membrane. Furthermore knowing the ζ-potential allows to tuning the separation efficiency of an A4F method. On the other hand we observed significant shifts in retention time for different membrane materials that impede the determination of particle size based on the classical A4F theory. These shifts cannot be attributed to the ζ-potential. Also the ζ-potential does not account for varying recovery rates of different particle types, instead the particle size seems to be the limiting factor. Therefore, the proper characterization of a polydisperse sample remains a challenge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2014.01.066 | DOI Listing |
Langmuir
January 2025
Brigham Young University, Provo, Utah 84602, United States.
Accurate models for predicting drop dynamics, such as maximum drop departure sizes, are crucial for estimating heat transfer rates during condensation on superhydrophobic (SH) surfaces. Previous studies have focused on examining the heat transfer rates for SH surfaces under the influence of gravity or vapor flowing over the surface. This study investigates the impact of surface solid fraction and texture scale on drop mobility in a condensing environment with a humid air flow.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia.
Hydroxyapatite (HA) is widely used as a bone graft. However, information on the head-to-head osteoinductivity and in vivo performance of micro- and nanosized natural and synthetic HA is still lacking. Here, we fabricated nanosized bovine HA (nanoBHA) by using a wet ball milling method and compared its in vitro and in vivo performance with microsized BHA, nanosized synthetic HA (nanoHA), and microsized synthetic HA (HA).
View Article and Find Full Text PDFPLoS One
January 2025
Curriculum in Toxicology & Environmental Medicine, UNC Chapel Hill, Chapel Hill, North Carolina, United States of America.
Growing evidence supports the importance of extracellular vesicle (EV) as mediators of communication in pathological processes, including those underlying respiratory disease. However, establishing methods for isolating and characterizing EVs remains challenging, particularly for respiratory samples. This study set out to address this challenge by comparing different EV isolation methods and evaluating their impacts on EV yield, markers of purity, and proteomic signatures, utilizing equine/horse bronchoalveolar lavage samples.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.
View Article and Find Full Text PDFToxics
January 2025
Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Road dust carries various contaminants and causes urban non-point source pollution in waterbodies through runoff. Road dust samples were collected in each month in two years and then sieved into five particle size fractions. The concentrations of ten heavy metals (As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn, Fe) in each fraction were measured.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!