Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session50l2dgrc9rjee2s4ira0hi7810dnihuf): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.transci.2014.01.018 | DOI Listing |
ACS Appl Bio Mater
March 2021
Department of Molecular Medicine, Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu 41944, South Korea.
Immuno-positron emission tomography (immuno-PET) is a rapidly growing imaging technique in which antibodies are radiolabeled to monitor their in vivo behavior in real time. However, effecting the controlled conjugation of a chelate-bearing radioactive atom to a bulky antibody without affecting its immunoreactivity at a specific site is always challenging. The in vivo stability of the radiolabeled chelate is also a key issue for successful tumor imaging.
View Article and Find Full Text PDFChem Commun (Camb)
April 2019
Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain.
Reinforced cross-bridged Ni2+-cyclam complexes were functionalised with pendant arms containing both amide protons and CF3 groups that lead to a dual 1H/19F response. The resulting complexes possess very high inertness favourable for MRI applications. The paramagnetism of the Ni2+ ion shifts the amide resonance 56 ppm away from bulk water favouring the chemical exchange saturation transfer (CEST) effect and shortening the acquisition times in 19F magnetic resonance imaging (MRI) experiments, thus enhancing the signal-to-noise ratios compared to the fluorinated diamagnetic reference.
View Article and Find Full Text PDFIn this paper, we present bridged-bowtie nanohole arrays and cross bridged-bowtie nanohole arrays in a gold thin film as surface enhanced Raman scattering (SERS) substrates. These SERS substrates not only exhibit large electromagnetic enhancement of SERS but also have the SERS enhancement spread over a much larger area than what could be present in SERS substrates consisting of nanopillar arrays or nanopillar plasmonic nanoantennas. Numerical simulations based on the finite difference time domain (FDTD) method are employed to determine electric field enhancement factors (EFs) and therefore the electromagnetic SERS enhancement factor for these SERS substrates.
View Article and Find Full Text PDFThe dermis of sea cucumbers is a catch connective tissue or a mutable collagenous tissue that shows rapid, large and reversible stiffness changes in response to stimulation. The main component of the dermis is the extracellular material composed of collagen fibrils embedded in a hydrogel of proteoglycans. The stiffness of the extracellular material determines that of the dermis.
View Article and Find Full Text PDFDalton Trans
October 2016
School of Biological, Biomedical and Environmental Sciences, The University of Hull, HU6 7RX, UK. and Positron Emission Tomography Research Centre, The University of Hull, HU6 7RX, UK.
A key part of the development of metal based Positron Emission Tomography probes is the chelation of the radiometal. In this review the recent developments in the chelation of four positron emitting radiometals, Ga, Cu, Zr and Sc, are explored. The factors that effect the chelation of each radio metal and the ideal ligand system will be discussed with regards to high in vivo stability, complexation conditions, conjugation to targeting motifs and complexation kinetics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!