Thirteen rock samples were collected for studying the variation of element content in the mineral during the alteration process from Xinjiang, China. The IED-6000 in situ micro energy dispersive X-ray fluorescence developed by CDUT was applied to get chemical and physical data from minerals. The non-destructive spectrometer is based on a low-power Mo-anode X-ray tube and a Si-PIN peltier cooled X-ray detector. The unique design of the tube's probe allows very close coupling of polycapillary and makes the use of micro-area measurement feasible and efficient. The spectrometer can be integrated into any microscope for analysis. The long axis diameter of beam spot is about 110 microm. According to micro-EDXRF measurement, the tetrahedrite was corrected to pyrite, improving the efficiency and accuracy of the mineral identification. The feldspar of mineralized rock sample is rich in Cu and Zn which can be used as prospecting indicator elements. Element content of Cr, Mn and Co shows negative correlation with the degree of mineralization.
Download full-text PDF |
Source |
---|
PeerJ
January 2025
Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
In this study, we attempt to illustrate fossil vertebrate dental tissue geochemistry and, by inference, its extent of diagenetic alteration, using quantitative, semi-quantitative and optical tools to evaluate bioapatite preservation. We present visual comparisons of elemental compositions in fish and plesiosaur dental remains ranging in age from Silurian to Cretaceous, based on a combination of micro-scale optical cathodoluminescence (CL) observations (optical images and scanning electron microscope) with minor, trace and rare earth element (REE) compositions (EDS, maps and REE profiles), as a tool for assessing diagenetic processes and biomineral preservation during fossilization of vertebrate dental apatite. Tissue-selective REE values have been obtained using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), indicating areas of potential REE enrichment, combined with cathodoluminescence (CL) analysis.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
Amid the burgeoning demand for electrochemical energy storage and neuromorphic computing, fast ion transport behavior has attracted widespread attention at both fundamental and practical levels. Here, based on the nanoconfined channel of graphene oxide laminar membranes (GOLMs), the lithium ionic conductivity typically exceeding 10 mS cm is realized, one to three orders of magnitude higher than traditional liquid or solid lithium-ion electrolyte. Specifically, the nanoconfined lithium hexafluorophosphate (LiPF)-ethylene carbonate (EC)/ dimethyl carbonate (DMC) electrolyte demonstrates the ionic conductivity of 170 mS cm, outperforming the bulk counterpart by ≈16 fold.
View Article and Find Full Text PDFAnal Methods
January 2025
Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
In this study, a mimetic fluorescence nanosensor based on a molecularly imprinted polymer was designed for the detection of amygdalin (AMG). Its characteristics and functional performance were investigated and recorded using ATR-FTIR, AFM and porosity tests. This designed sensor is considered superior to other reported techniques due to its low material consumption during both manufacturing and operation as well as its low cost and desirable performance characteristics, such as short response time, high stability and an appropriate detection limit.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Retinomorphic systems that can see, recognize, and respond to real-time environmental information will extend the complexity and range of tasks that an exoskeleton robot can perform to better assist physically disabled people. However, the lack of ultrasensitive, reconfigurable, and large-scale integratable retinomorphic devices and advanced edge-processing algorithms makes it difficult to realize retinomorphic hardware. Here, we report the retinomorphic hardware prototype with a 4096-pixel perovskite image sensor array as core module to endow embodied intelligent vision functionalities.
View Article and Find Full Text PDFAdv Mater
December 2024
The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
The electrochemical conversion of carbon dioxide (CO) into hydrocarbon products emerges as a pivotal sustainable strategy for carbon utilization. Cu-based catalysts are currently prioritized as the most effective means for this process, yet it remains a long-term goal to achieve high product selectivity at elevated current densities. This study delved into exploring the influence of a topological poly(2-aminoazulene) with a substantial dipole moment on modulating the Cu surface dipole field to augment the catalytic activity involved in CO reduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!