Neck of femur stress fractures, whilst representing only around 8% of stress fractures is associated with a high morbidity. Radiographically, stress fractures of neck of femur are classified into compression and tensile type. Tensile type is notorious for displacement and hence prophylactic surgery is indicated, unlike stable compression fracture. Currently recombinant Parathyroid Hormone (PTH) is used in the treatment of osteoporosis. More recently, many animal studies suggest that the recombinant PTH is helpful to achieve fracture union in normal model and in impaired fracture healing model. We achieved union in a 62-year-old postmenopausal female with tensile type of fracture neck of femur, who had multiple comorbidities for impaired healing of fracture, without any surgical intervention using systemic recombinant PTH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917587PMC

Publication Analysis

Top Keywords

tensile type
16
neck femur
16
fracture neck
12
stress fractures
12
impaired healing
8
healing fracture
8
recombinant pth
8
fracture
7
tensile
4
stress
4

Similar Publications

This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate composite suitable for real-time, resistive-type humidity detection. Comprehensive characterization of the chitosan film was performed using Fourier-transform infrared (FTIR) spectroscopy, contact angle measurements, and tensile testing, which confirmed its chemical structure, wettability, and mechanical stability.

View Article and Find Full Text PDF

The range of sensor technologies for structural health monitoring (SHM) systems is expanding as the need for ongoing structural monitoring increases. In such a case, damage to the monitored structure elements is detected using an integrated network of sensors operating in real-time or periodically in frequent time stamps. This paper briefly introduces a new type of sensor, called a Customized Crack Propagation Sensor (CCPS), which is an alternative for crack gauges, but with enhanced functional features and customizability.

View Article and Find Full Text PDF

Hydrogen embrittlement is a critical issue for zirconium alloys, which receives long-term attention in their applications. The formation of brittle hydrides facilitates crack initiation and propagation, thereby significantly reducing the material's ductility. This study investigates the tensile properties and hydride morphology of a novel zirconium alloy under different hydrogen-charging current densities ranging from 0 to 300 mA/cm, aiming to clarify the influence of hydrides on the fracture behavior of the alloy.

View Article and Find Full Text PDF

Influence of Different Solvents on the Mechanical Properties of Electrospun Scaffolds.

Materials (Basel)

January 2025

Department of Biomechanical Engineering, Faculty of Mechanics, Vilnius Gediminas Technical University, Plytinės Str. 25, 10105 Vilnius, Lithuania.

This article investigates the influence of different solvents on the mechanical properties of biocompatible and biodegradable polycaprolactone (PCL) scaffolds. During the research, using electrospinning technology, 27 samples of polycaprolactone nanofibers exposed to different solvents were produced. A tensile test was performed on the produced nanofiber samples, and the nanofiber mechanical properties, yield strength, elastic modulus, and elastic elongation were calculated, and load-displacement and stress-strain dependence diagrams were compared from the obtained results.

View Article and Find Full Text PDF

To reveal the mechanical behavior and deformation patterns of geotechnical reinforcement materials under tensile loading, a series of tensile tests were conducted on plastic geogrid rib, fiberglass geogrid rib, gabion steel wire, plastic geogrid mesh, fiberglass geogrid mesh, and gabion mesh. The full tensile force-strain relationships of the reinforcement materials were obtained. The failure modes of different geotechnical reinforcement materials were discussed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!