Rapid in vitro propagation, conservation and analysis of genetic stability of Viola pilosa.

Physiol Mol Biol Plants

Department of Biotechnology, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh India.

Published: January 2014

AI Article Synopsis

  • A successful in vitro propagation protocol for the medicinal plant Viola pilosa was developed using MS basal medium with specific growth regulators, where the best composition included BA, TDZ, and GA3 for shoot bud establishment.
  • The problem of shoot vitrification was addressed by transferring affected shoots to a different medium for successful multiplication, and root induction was achieved with IBA, resulting in a high survival rate when plantlets were transferred to soil.
  • Conservation strategies involved slowing growth at low temperatures and cryopreservation, with optimal retrieval rates observed under specific controlled conditions; genetic stability of the plants was confirmed, indicating the protocol's reliability.

Article Abstract

A protocol for in vitro propagation was developed for Viola pilosa, a plant of immense medicinal value. To start with in vitro propagation, the sterilized explants (buds) were cultured on MS basal medium supplemented with various concentrations of growth regulators. One of the medium compositions MS basal + 0.5 mg/l BA + 0.5 mg/l TDZ + 0.5 mg/l GA3 gave best results for in vitro shoot bud establishment. Although the problem of shoot vitrification occurred on this medium but this was overcome by transferring the vitrified shoots on MS medium supplemented with 1 mg/l BA and 0.25 mg/l Kn. The same medium was found to be the best medium for further in vitro shoot multiplication. 100 % root induction from in vitro grown shoots was obtained on half strength MS medium supplemented with 1 mg/l IBA. In vitro formed plantlets were hardened and transferred to soil with 83 % survival. Additionally, conservation of in vitro multiplying shoots was also attempted using two different approaches namely slowing down the growth at low temperature and cryopreservation following vitrification. At low temperature retrieval rate was better at 10 °C than at 4 °C after conservation of in vitro multiplying shoots. In cryopreservation-vitrification studies, the vitrified shoot buds gave maximum retrieval of 41.66 % when they were precooled at 4 °C, while only 16.66 % vitrified shoots were retrieved from those precooled at 10 °C. Genetic stability of the in vitro grown plants was analysed by RAPD and ISSR markers which indicated no somaclonal variation among in vitro grown plants demonstrating the feasibility of using the protocol without any adverse genetical effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3925485PMC
http://dx.doi.org/10.1007/s12298-013-0200-8DOI Listing

Publication Analysis

Top Keywords

vitro propagation
12
medium supplemented
12
vitro grown
12
vitro
10
genetic stability
8
viola pilosa
8
vitro shoot
8
vitrified shoots
8
supplemented 1 mg/l
8
conservation vitro
8

Similar Publications

The vascular endothelial growth factor receptor is essential for the angiogenesis of cancer. Tumor propagation was effectively suppressed by inhibiting VEGFR-2 activity. As a result, the target quinoxaline-pyrazole hybrids were created in a way that closely resembled the structural characteristics of VEGFR-2 inhibitors.

View Article and Find Full Text PDF

Evaluation of tooth-specific optical properties for the development of a non-invasive pulp diagnostic system using Transmitted-light plethysmography: An in vitro study.

Arch Oral Biol

January 2025

Department of Pediatric Dentistry/Dentistry for Persons with Special Needs, Division of Oral Restitution, Graduate School, Institute of Science Tokyo, Japan.

Objectives: Transmitted-light plethysmography (TLP) is an objective and non-invasive pulp diagnosis method that has already been validated for applications for incisors. However, there is a demand for TLP use in the molars, it has not yet been established for this application. This study investigated the optimal light source wavelengths for TLP in premolars, to establish a pulp diagnosis system based on measuring pulpal blood flow.

View Article and Find Full Text PDF

Optimizing In Vitro Propagation of Schönland Using Leaf, Root, and Inflorescence.

Plants (Basel)

January 2025

Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain.

, a species native to South Africa, is characterized by its limited growth and scarcity, contributing to high production costs. Countries like China and Turkey are known for exporting globally. Tissue culture offers an efficient method for mass-producing unique and beautiful species such as This study tested Murashige and Skoog (MS) basal media supplemented with various concentrations of IBA (0.

View Article and Find Full Text PDF

Enhancing Acclimatization Conditions for 'Fire': A Comparative Analysis of Substrate Effects on Growth and Survival.

Plants (Basel)

January 2025

Department of Floriculture and Dendrology, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), Villányi Street 29-43, 1118 Budapest, Hungary.

This study investigates the acclimatization success of 'Fire', a popular ornamental bromeliad, through in vitro propagation on various substrates. Due to the increasing demand for , micropropagation offers a promising solution to overcome the limitations of traditional propagation methods. In this research, acclimatization was conducted in two trial types: in the one-step greenhouse conditions, and in two-step acclimatization, which introduced a controlled laboratory step before transferring plants to the greenhouse.

View Article and Find Full Text PDF

Proteomic Analysis of Differentially Expressed Proteins in A549 Cells Infected with H9N2 Avian Influenza Virus.

Int J Mol Sci

January 2025

Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Influenza A viruses (IAVs) are highly contagious pathogens that cause zoonotic disease with limited availability of antiviral therapies, presenting ongoing challenges to both public health and the livestock industry. Unveiling host proteins that are crucial to the IAV life cycle can help clarify mechanisms of viral replication and identify potential targets for developing alternative host-directed therapies. Using a four-dimensional (4D), label-free methodology coupled with bioinformatics analysis, we analyzed the expression patterns of cellular proteins that changed following H9N2 virus infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!