Au/TiO2 catalysts prepared by a deposition-precipitation process and used for CO oxidation without previous calcination exhibited high, largely temperature-independent conversions at low temperatures, with apparent activation energies of about zero. Thermal treatments, such as He at 623 K, changed the conversion-temperature characteristics to the well-known S-shape, with activation energies slightly below 30 kJ mol(-1). Sample characterization by XAFS and electron microscopy and a low-temperature IR study of CO adsorption and oxidation showed that CO can be oxidized by gas-phase O2 at 90 K already over the freeze-dried catalyst in the initial state that contained Au exclusively in the +3 oxidation state. CO conversion after activation in the feed at 303 K is due to Au(III)-containing sites at low temperatures, while Au(0) dominates conversion at higher temperatures. After thermal treatments, CO conversion in the whole investigated temperature range results from sites containing exclusively Au(0).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201308206 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!